Invariant Distributions in Systems with Elastic Reflections
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 301-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive equations for invariant distributions of billiards as invertible (measure-preserving) dynamic systems in a symmetric phase space and find their solutions. We introduce and investigate invariant measures for the complete and contracted descriptions and establish the relation between them.
@article{TMF_2002_130_2_a6,
     author = {S. V. Naydenov and V. V. Yanovskii},
     title = {Invariant {Distributions} in {Systems} with {Elastic} {Reflections}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {301--319},
     year = {2002},
     volume = {130},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a6/}
}
TY  - JOUR
AU  - S. V. Naydenov
AU  - V. V. Yanovskii
TI  - Invariant Distributions in Systems with Elastic Reflections
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 301
EP  - 319
VL  - 130
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a6/
LA  - ru
ID  - TMF_2002_130_2_a6
ER  - 
%0 Journal Article
%A S. V. Naydenov
%A V. V. Yanovskii
%T Invariant Distributions in Systems with Elastic Reflections
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 301-319
%V 130
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a6/
%G ru
%F TMF_2002_130_2_a6
S. V. Naydenov; V. V. Yanovskii. Invariant Distributions in Systems with Elastic Reflections. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 301-319. http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a6/

[1] I. P. Kornfeld, Ya. G. Sinai, S. I. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[2] R. V. Gamkrelidze (nauchn. red.); R. V. Gamkrelidze, Ya. G. Sinai i dr. (red.), Dinamicheskie sistemy – 2, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985 | MR

[3] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, Izd-vo “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999 | Zbl

[4] G. Shuster, Determinirovannyi khaos. Vvedenie, Mir, M., 1988 | MR | Zbl

[5] A. Likhtenberg, M. Liberman, Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984

[6] Yu. I. Neimark, P. S. Landa, Stokhasticheskie i khaoticheskie kolebaniya, Nauka, M., 1987 | MR

[7] Dzh. Birkgof, Dinamicheskie sistemy, Gostekhizdat, M., 1941; Издат. дом “Удмуртский университет”, Ижевск, 1999

[8] Ya. G. Sinai, UMN, 25:2 (1970), 141 | MR | Zbl

[9] V. F. Lazutkin, Vypuklyi bilyard i sobstvennye funktsii operatora Laplasa, LGU, L., 1981 | MR

[10] S. V. Naidënov, V. V. Yanovskii, TMF, 127:1 (2001), 110 ; 129:1, 116 | DOI | MR | Zbl | DOI | MR | Zbl

[11] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR

[12] Dzh. Okstobi, Mera i kategoriya, Mir, M., 1974

[13] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[14] J. A. G. Roberts, G. R. W. Qwispel, Phys. Rep., 216 (1992), 1 | DOI | MR

[15] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl

[16] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti, Nauka, M., 1988 | MR

[17] M. B. Sevryuk, Reversible systems, Lecture Notes in Math., 1211, Springer, Berlin, 1986 | DOI | MR | Zbl

[18] R. Bowen, Amer. J. Mathem., 94 (1972), 413 | DOI | MR | Zbl