Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 287-300
Voir la notice de l'article provenant de la source Math-Net.Ru
Some classes of dissipative and Hamiltonian distributed systems are described. The dynamics of these systems is effectively reduced to finite-dimensional dynamics which can be unboundedly complex in a sense. Yarying the parameters of these systems, we can obtain an arbitrary (to within the orbital topological equivalence) structurally stable attractor in the dissipative case and an arbitrary polynomial weakly integrable Hamiltonian in the conservative case. As examples, we consider Hopfield neural networks and some reaction-diffusion systems in the dissipative case and a nonlinear string in the Hamiltonian case.
@article{TMF_2002_130_2_a5,
author = {A. K. Abramyan and S. A. Vakulenko},
title = {Dissipative and {Hamiltonian} {Systems} with {Chaotic} {Behavior:} {An} {Analytic} {Approach}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {287--300},
publisher = {mathdoc},
volume = {130},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a5/}
}
TY - JOUR AU - A. K. Abramyan AU - S. A. Vakulenko TI - Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2002 SP - 287 EP - 300 VL - 130 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a5/ LA - ru ID - TMF_2002_130_2_a5 ER -
%0 Journal Article %A A. K. Abramyan %A S. A. Vakulenko %T Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach %J Teoretičeskaâ i matematičeskaâ fizika %D 2002 %P 287-300 %V 130 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a5/ %G ru %F TMF_2002_130_2_a5
A. K. Abramyan; S. A. Vakulenko. Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 287-300. http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a5/