Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 287-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some classes of dissipative and Hamiltonian distributed systems are described. The dynamics of these systems is effectively reduced to finite-dimensional dynamics which can be unboundedly complex in a sense. Yarying the parameters of these systems, we can obtain an arbitrary (to within the orbital topological equivalence) structurally stable attractor in the dissipative case and an arbitrary polynomial weakly integrable Hamiltonian in the conservative case. As examples, we consider Hopfield neural networks and some reaction-diffusion systems in the dissipative case and a nonlinear string in the Hamiltonian case.
@article{TMF_2002_130_2_a5,
     author = {A. K. Abramyan and S. A. Vakulenko},
     title = {Dissipative and {Hamiltonian} {Systems} with {Chaotic} {Behavior:} {An} {Analytic} {Approach}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {287--300},
     year = {2002},
     volume = {130},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a5/}
}
TY  - JOUR
AU  - A. K. Abramyan
AU  - S. A. Vakulenko
TI  - Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 287
EP  - 300
VL  - 130
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a5/
LA  - ru
ID  - TMF_2002_130_2_a5
ER  - 
%0 Journal Article
%A A. K. Abramyan
%A S. A. Vakulenko
%T Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 287-300
%V 130
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a5/
%G ru
%F TMF_2002_130_2_a5
A. K. Abramyan; S. A. Vakulenko. Dissipative and Hamiltonian Systems with Chaotic Behavior: An Analytic Approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 287-300. http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a5/

[1] S. A. Vakulenko, Annales de L'Institut H. Poincarè Physique Théorique, 66 (1997), 373 | MR | Zbl

[2] S. A. Vakulenko, Advances in Differential Equations, 5 (2000), 1739 | MR

[3] G. Nikolis, I. Prigozhin, Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979

[4] H. Haken, Synergetic, An Introduction, 3rd ed., Springer, Berlin–Heidelberg–New-York, 1983 | MR

[5] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, Berlin, 1984 | MR | Zbl

[6] O. A. Ladyzhenskaya, UMN, 42:6 (1987), 25 | MR | Zbl

[7] J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, 1988 | MR | Zbl

[8] A. B. Babin, M. I. Vishik, J. Math. Pures Appl., 62 (1983), 441 | MR | Zbl

[9] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integrable Manifolds and Inertial Manifolds for Dissipative Differential Equations, Springer, New-York, 1989 | MR

[10] Yu. Ilyashenko, Veigu Li, Nelokalnye bifurkatsii, MTsNMO, M., 1999 | MR

[11] P. Poláčik, J. Diff. Equations, 119 (1995), 24 | DOI | Zbl

[12] E. N. Dancer, P. Poláčik, Memoirs of Amer. Math. Society, 140, no. 668, 1999, 1 | DOI | MR

[13] J. J. Hopfield, Proc. of Natl. Acad. USA, 79 (1982), 2554 | DOI | MR

[14] R. Edwards, Math. Meth. Appl. Sci., 19 (1996), 651 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] G. M. Zaslavskii, R. Z. Sagdeev, D. A. Usikov, A. A. Chernikov, UFN, 156:2 (1988), 193 | DOI

[16] N. V. Nikolenko, UMN, 35 (1980), 121 | MR | Zbl

[17] J. Bourgain, “Nonlinear Schrödinger equations”, Hyperbolic Equations and Frequency Interactions, IAS/PARC City Mat. Ser. 5, eds. L. Caffarelli et al., AMS, Providence, RI, 1999, 3 | MR

[18] A. K. Abramyan, J. of Technical Acoustic, 2:3 (1995), 5 | MR