Properties of the Schrödinger Operator Spectrum in a Magnetic Field
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 267-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of the spectrum of the Schrödinger operator with magnetic and electric potentials are investigated. We prove that the operator has no positive eigenvalues and its spectrum is absolutely continuous on the positive semiaxis.
@article{TMF_2002_130_2_a3,
     author = {M. B. Gubaidullin},
     title = {Properties of the {Schr\"odinger} {Operator} {Spectrum} in {a~Magnetic} {Field}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {267--274},
     year = {2002},
     volume = {130},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a3/}
}
TY  - JOUR
AU  - M. B. Gubaidullin
TI  - Properties of the Schrödinger Operator Spectrum in a Magnetic Field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 267
EP  - 274
VL  - 130
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a3/
LA  - ru
ID  - TMF_2002_130_2_a3
ER  - 
%0 Journal Article
%A M. B. Gubaidullin
%T Properties of the Schrödinger Operator Spectrum in a Magnetic Field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 267-274
%V 130
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a3/
%G ru
%F TMF_2002_130_2_a3
M. B. Gubaidullin. Properties of the Schrödinger Operator Spectrum in a Magnetic Field. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 267-274. http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a3/

[1] M. B. Gubaidullin, Kh. Kh. Murtazin, TMF, 126:3 (2001), 443 | DOI | MR | Zbl

[2] Kh. Kh. Murtazin, V. A. Sadovnichii, Spektralnyi analiz mnogochastichnogo operatora Shredingera, Izd-vo MGU, M., 1988

[3] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami v kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR