Geometry of Solutions of the $N=2$ SYM Theory in Harmonic Superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 251-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical equations of motion of the $D=4$, $N=2$ supersymmetric Yang–Mills (SYM) theory for Minkowski and Euclidean spaces are analyzed in harmonic superspace. We study dual superfield representations of equations and subsidiary conditions corresponding to classical SYM solutions with different symmetries. In particular, alternative superfield constructions of self-dual and static solutions are described in the framework of the harmonic approach.
@article{TMF_2002_130_2_a2,
     author = {B. M. Zupnik},
     title = {Geometry of {Solutions} of the $N=2$ {SYM} {Theory} in {Harmonic} {Superspace}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {251--266},
     year = {2002},
     volume = {130},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a2/}
}
TY  - JOUR
AU  - B. M. Zupnik
TI  - Geometry of Solutions of the $N=2$ SYM Theory in Harmonic Superspace
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 251
EP  - 266
VL  - 130
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a2/
LA  - ru
ID  - TMF_2002_130_2_a2
ER  - 
%0 Journal Article
%A B. M. Zupnik
%T Geometry of Solutions of the $N=2$ SYM Theory in Harmonic Superspace
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 251-266
%V 130
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a2/
%G ru
%F TMF_2002_130_2_a2
B. M. Zupnik. Geometry of Solutions of the $N=2$ SYM Theory in Harmonic Superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 251-266. http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a2/

[1] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Class. Q Grav., 1 (1984), 469 | DOI | MR

[2] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Class. Q Grav., 2 (1985), 601 | DOI | MR | Zbl

[3] B. M. Zupnik, Phys. Lett. B, 183 (1987), 175 | DOI | MR

[4] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Ann. Phys., 185 (1988), 1 | DOI | MR

[5] O. Ogievetsky, “Harmonic representatives of instantons and self-dual monopoles”, Group Theoretical Methods in Physics, Lect. Notes in Phys., 313, eds. H.-D. Doebner, J.-D. Hennig, T. D. Palev, Springer, Berlin, 1988, 548 | DOI | MR

[6] C. Devchand, V. Ogievetsky, Nucl. Phys. B, 414 (1994), 763 ; Erratum, Nucl. Phys. B, 451 (1995), 768 | DOI | MR | DOI | MR

[7] B. M. Zupnik, Phys. Lett. B, 375 (1996), 170 ; “Alternative formulations of $N=2$ supersymmetric gauge theory in harmonic superspace”, Supersymmetry and Quantum Field Theory, Lect. Notes in Phys., 509, eds. J. Wess, V. Akulov, Springer, Berlin, 1998, 157 | DOI | MR | Zbl | DOI | MR | Zbl

[8] B. M. Zupnik, “Short harmonic superfields and light-cone gauge in super-Yang–Mills equations”, Proc. Intern. Conf. “Quantization, Gauge Theory and Strings”, devoted to the memory of prof. E. S. Fradkin, eds. A. Semikhatov, M. Vasiliev, V. Zaikin, Scientific World, M., 2001, 277 ; E-print hep-th/0011012 | MR | Zbl

[9] B. M. Zupnik, Nucl. Phys. B, 554 (1999), 365 | DOI | MR | Zbl

[10] B. M. Zupnik, Phys. Lett. B, 209 (1988), 513 | DOI | MR

[11] N. Seiberg, E. Witten, Nucl. Phys. B, 426 (1994), 19 | DOI | MR | Zbl

[12] J. Gauntlett, Nucl. Phys. B, 411 (1994), 443 | DOI | MR | Zbl

[13] E. A. Ivanov, S. V. Ketov, B. M. Zupnik, Nucl. Phys. B, 509 (1998), 53 | DOI | MR

[14] A. Semikhatov, Phys. Lett. B, 120 (1983), 171 | DOI | MR

[15] I. V. Volovich, Phys. Lett., 129 (1983), 429 | DOI | MR

[16] Yu. I. Manin, Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984 | MR

[17] W. Siegel, Phys. Rev. D, 52 (1995), 1042 | DOI | MR

[18] J. Niederle, B. Zupnik, Nucl. Phys. B, 598 (2001), 645 ; E-print hep-th/0012114 | DOI | MR | Zbl