Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 233-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the problem of describing all nonsingular pairs of compatible flat metrics (or, in other words, nonsingular flat pencils of metrics) in the general $N$-component case. This problem is equivalent to the problem of describing all compatible Dubrovin–Novikov brackets (compatible nondegenerate local Poisson brackets of hydrodynamic type) playing an important role in the theory of integrable systems of hydrodynamic type and also in modern differential geometry and field theory. We prove that all nonsingular pairs of compatible flat metrics are described by a system of nonlinear differential equations that is a special nonlinear differential reduction of the classical Lamé equations, and we present a scheme for integrating this system by the method of the inverse scattering problem. The integration procedure is based on using the Zakharov method for integrating the Lamé equations (a version of the inverse scattering method).
@article{TMF_2002_130_2_a1,
     author = {O. I. Mokhov},
     title = {Integrability of the {Equations} for {Nonsingular} {Pairs} of {Compatible} {Flat} {Metrics}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {233--250},
     year = {2002},
     volume = {130},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a1/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 233
EP  - 250
VL  - 130
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a1/
LA  - ru
ID  - TMF_2002_130_2_a1
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 233-250
%V 130
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a1/
%G ru
%F TMF_2002_130_2_a1
O. I. Mokhov. Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 2, pp. 233-250. http://geodesic.mathdoc.fr/item/TMF_2002_130_2_a1/

[1] O. I. Mokhov, Compatible and almost compatible pseudo-Riemannian metrics, E-print arXiv.math.DG/0005051 | MR

[2] V. E. Zakharov, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[3] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups, Lect. Notes Math., 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 ; E-print hep-th/9407018 | DOI | MR | Zbl

[4] B. Dubrovin, Differential geometry of the space of orbits of a Coxeter group, Preprint SISSA-29/93/FM | MR | Zbl

[5] B. Dubrovin, Flat pencils of metrics and Frobenius manifolds, Preprint SISSA 25/98/FM | MR | Zbl

[6] E. V. Ferapontov, “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Topics in Topology and Mathematical Physics, ed. S. P. Novikov, Amer. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl

[7] O. I. Mokhov, UMN, 52:6 (1997), 171–172 | DOI | MR

[8] O. I. Mokhov, UMN, 53:2 (1998), 153–154 | DOI | MR | Zbl

[9] O. I. Mokhov, Tr. MIAN, 225, 1999, 284–300 | MR | Zbl

[10] O. I. Mokhov, Rep. Math. Phys., 43:1/2 (1999), 247–256 | DOI | MR | Zbl

[11] O. I. Mokhov, E. V. Ferapontov, UMN, 45:3 (1990), 191–192 | MR | Zbl

[12] E. V. Ferapontov, Funkts. analiz i ego prilozh., 25:3 (1991), 37–49 | MR | Zbl

[13] E. V. Ferapontov, “Gamiltonovye sistemy gidrodinamicheskogo tipa i ikh realizatsiya na giperpoverkhnostyakh psevdoevklidova prostranstva”, Itogi nauki i tekhniki. Problemy geometrii, 22, eds. R. V. Gamkrelidze, N. M. Ostianu i dr., VINITI, M., 1990, 59–96 | MR

[14] O. I. Mokhov, Phys. Lett. A, 166:3, 4 (1992), 215–216 | DOI | MR

[15] O. I. Mokhov, E. V. Ferapontov, Funkts. analiz i ego prilozh., 28:2 (1994), 60–63 | MR | Zbl

[16] O. I. Mokhov, UMN, 53:3 (1998), 85–192 | DOI | MR | Zbl

[17] B. A. Dubrovin, S. P. Novikov, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[18] B. A. Dubrovin, S. P. Novikov, UMN, 44:6 (1989), 29–98 | MR | Zbl

[19] F. Magri, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[20] I. M. Gelfand, I. Ya. Dorfman, Funkts. analiz i ego prilozh., 13:4 (1979), 13–30 | MR | Zbl

[21] B. Fuchssteiner, Nonlinear Anal. Theor. Meth. Appl., 3 (1979), 849–862 | DOI | MR | Zbl

[22] A. S. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento, 28:8 (1980), 299–303 | DOI | MR

[23] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[24] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, 1993 | MR

[25] O. I. Mokhov, UMN, 40:5 (1985), 257–258 | MR | Zbl

[26] O. I. Mokhov, Funkts. analiz i ego prilozh., 21:3 (1987), 53–60 | MR | Zbl

[27] D. B. Cooke, J. Math. Phys., 32:1 (1991), 109–119 | DOI | MR | Zbl

[28] D. B. Cooke, J. Math. Phys., 32:11 (1991), 3071–3076 | DOI | MR | Zbl

[29] C. S. Gardner, J. Math. Phys., 12:8 (1971), 1548–1551 | DOI | MR | Zbl

[30] V. E. Zakharov, L. D. Faddeev, Funkts. analiz i ego prilozh., 5:4 (1971), 18–27 | MR | Zbl

[31] Y. Nutku, J. Math. Phys., 28:11 (1987), 2579–2585 | DOI | MR | Zbl

[32] P. Olver, Y. Nutku, J. Math. Phys., 29:7 (1988), 1610–1619 | DOI | MR | Zbl

[33] M. Arik, F. Neyzi, Y. Nutku, P. J. Olver, J. M. Verosky, J. Math. Phys., 30:6 (1989), 1338–1344 | DOI | MR | Zbl

[34] F. Neyzi, J. Math. Phys., 30:8 (1989), 1695–1698 | DOI | MR | Zbl

[35] H. Gümral, Y. Nutku, J. Math. Phys., 31:11 (1990), 2606–2611 | DOI | MR | Zbl

[36] E. V. Ferapontov, M. V. Pavlov, Physica D, 52 (1991), 211–219 | DOI | MR | Zbl

[37] A. Nijenhuis, Indagationes Math., 13:2 (1951), 200–212 | DOI | MR | Zbl

[38] A. Haantjes, Indagationes Math., 17:2 (1955), 158–162 | DOI | MR

[39] G. Darboux, Leçons sur les Systèmes Orthogonaux et les Coordonnées Curvilignes, 2nd ed., Gauthier-Villars, Paris, 1910 | MR

[40] E. Kartan, Vneshnie differentsialnye sistemy i ikh geometricheskie prilozheniya, Izd-vo MGU, M., 1962 | MR

[41] L. Bianchi, Opere. V. 3. Sistemi Tripli Orthogonali, Edizioni Cremonese, Roma, 1955 | MR | Zbl

[42] I. M. Krichever, Funkts. analiz i ego prilozh., 31:1 (1997), 32–50 | DOI | MR | Zbl