Field Theory Analysis of Critical Behavior of a Symmetric Binary Fluid
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 145-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is elaborated for constructing an effective field theory Hamiltonian of the Landau–Ginzburg–Wilson type for off-lattice models of binary fluids. We show that all coefficients of the effective Hamiltonian for a symmetric binary fluid can be expressed in terms of some known characteristics of the model hard-sphere fluid, namely, compressibility and its derivatives with respect to density. Application of the effective Hamiltonian is demonstrated by an example of determining the curve of critical layering points in the mean-field approximation. This curve agrees well with numerical experiment results for symmetric binary fluids.
@article{TMF_2002_130_1_a9,
     author = {N. V. Brilliantov and A. Yu. Loskutov and V. V. Malinin},
     title = {Field {Theory} {Analysis} of {Critical} {Behavior} of {a~Symmetric} {Binary} {Fluid}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {145--158},
     year = {2002},
     volume = {130},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a9/}
}
TY  - JOUR
AU  - N. V. Brilliantov
AU  - A. Yu. Loskutov
AU  - V. V. Malinin
TI  - Field Theory Analysis of Critical Behavior of a Symmetric Binary Fluid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 145
EP  - 158
VL  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a9/
LA  - ru
ID  - TMF_2002_130_1_a9
ER  - 
%0 Journal Article
%A N. V. Brilliantov
%A A. Yu. Loskutov
%A V. V. Malinin
%T Field Theory Analysis of Critical Behavior of a Symmetric Binary Fluid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 145-158
%V 130
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a9/
%G ru
%F TMF_2002_130_1_a9
N. V. Brilliantov; A. Yu. Loskutov; V. V. Malinin. Field Theory Analysis of Critical Behavior of a Symmetric Binary Fluid. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 145-158. http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a9/

[1] G. Stenli, Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973

[2] N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Addison-Wesley, New York, 1992

[3] Y. M. Ivanchenko, A. A. Lisyansky, Physics of Critical Fluctuations, Springer, New York, 1995

[4] Sh. Ma, Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[5] J. A. White, S. Zhang, J. Chem. Phys., 99 (1993), 2012 | DOI

[6] J. A. White, S. Zhang, J. Chem. Phys., 103:5 (1995), 1922 | DOI

[7] L. Reatto, A. Parola, J. Phys.: Condens. Matter, 8:47 (1996), 9221 | DOI

[8] M. Tau, A. Parola, D. Pini, L. Reatto, Phys. Rev. E, 52:3 (1995), 2644 | DOI

[9] A. Parola, L. Reatto, Adv. in Phys., 44:3 (1995), 211 | DOI

[10] C. Vause, J. Sak, Phys. Rev. A, 21:6 (1980), 2099 | DOI | MR

[11] R. J. Leote de Carvalho, R. Evans, J. Phys.: Condens. Matter, 7 (1995), L575 | DOI

[12] M. E. Fisher, B. P. Lee, Phys. Rev. Lett., 77:17 (1996), 3561 | DOI

[13] Y. Levin, M. E. Fisher, Physica A, 225:2 (1996), 164 | DOI

[14] M. E. Fisher, J. Phys.: Condens. Matter, 8:47 (1996), 9103 | DOI

[15] J. Hubbard, P. Schofield, Phys. Lett. A, 40:3 (1972), 245 | DOI

[16] N. V. Brilliantov, Phys. Rev. E, 58 (1998), 2628 | DOI

[17] N. V. Brilliantov, J. Valleau, J. Chem. Phys., 108:3 (1998), 1123 | DOI

[18] N. V. Brilliantov, C. Bagnuls, C. Bervillier, Phys. Lett. A, 245 (1998), 274 | DOI

[19] I. R. Yukhnovskii, Phase Transitions of the Second Order, World Scientific, Singapore, 1987 | MR | Zbl

[20] M. C. Barbosa, Physica A, 177 (1991), 153 | DOI | MR

[21] M. E. Fisher, M. C. Barbosa, Phys. Rev. B, 43:13 (1991), 11177 | DOI

[22] Y. C. Kim, M. E. Fisher, M. C. Barbosa, The isothermal binodal curves near a critical endpoint, E-print cond-mat/0102195

[23] N. B. Wilding, Phys. Rev. Lett., 78:8 (1997), 1488 | DOI

[24] N. B. Wilding, F. Schmid, P. Nielaba, Phys. Rev. E, 58:1 (1998), 2201 | DOI

[25] H. W. Diehl, Physica A, 281 (2000), 268 | DOI

[26] I. R. Yukhnovskii, O. V. Patsahan, J. Stat. Phys., 81 (1995), 647 ; O. V. Patsahan, M. P. Kozlovskii, R. S. Melnyk, Ab initio study of the vapour-liquid critical point of a symmetrical binary fluid mixture, E-print cond-mat/9907195 | DOI | MR | Zbl

[27] J. J. Binney, N. J. Dowrich, A. J. Fisher, M. E. J. Newman, The Theory of Critical Phenomena, Clarendon, Oxford, 1993 | MR

[28] R. Kubo, J. Phys. Soc. Japan, 17:7 (1962), 1100 | DOI | MR | Zbl

[29] C. G. Gray, K. E. Gubbins, Theory of Molecular Fluids, Clarendon, Oxford, 1984

[30] N. F. Carnahan, K. E. Starling, J. Chem. Phys., 51:2 (1969), 635 | DOI

[31] M. S. Wertheim, Phys. Rev. Lett., 10:8 (1963), 321 | DOI | MR | Zbl

[32] E. Thiele, J. Chem. Phys., 39 (1963), 474 | DOI