Melting of Two-Dimensional Systems: Dependence of the Type of Transition on the Radius of the Potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 119-130

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the two-dimensional melting theory based on the density functional approach, we use a Monte–Carlo computer simulation to study melting of a two-dimensional hard disk system with a rectangular-well attraction potential. We show that depending on the attraction radius, the melting can occur via a single first-order transition as well as continuously in accordance with the Kosterlitz–Thouless–Halperin–Nelson–Young theory.
@article{TMF_2002_130_1_a7,
     author = {L. M. Pomirchi and V. N. Ryzhov and E. E. Tareeva},
     title = {Melting of {Two-Dimensional} {Systems:} {Dependence} of the {Type} of {Transition} on the {Radius} of the {Potential}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a7/}
}
TY  - JOUR
AU  - L. M. Pomirchi
AU  - V. N. Ryzhov
AU  - E. E. Tareeva
TI  - Melting of Two-Dimensional Systems: Dependence of the Type of Transition on the Radius of the Potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 119
EP  - 130
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a7/
LA  - ru
ID  - TMF_2002_130_1_a7
ER  - 
%0 Journal Article
%A L. M. Pomirchi
%A V. N. Ryzhov
%A E. E. Tareeva
%T Melting of Two-Dimensional Systems: Dependence of the Type of Transition on the Radius of the Potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 119-130
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a7/
%G ru
%F TMF_2002_130_1_a7
L. M. Pomirchi; V. N. Ryzhov; E. E. Tareeva. Melting of Two-Dimensional Systems: Dependence of the Type of Transition on the Radius of the Potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a7/