Countably Periodic Gibbs Measures of the Ising Model on the Cayley Tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 109-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a wide class of normal divisors of infinite index of the group representation of the Cayley tree and study the structure of partitions of the Cayley tree w.r.t. any normal divisor of infinite index. We prove that for a specific normal divisor of infinite index, there are three periodic and uncountably many nonperiodic Gibbs measures for an inhomogeneous Ising model.
@article{TMF_2002_130_1_a6,
     author = {U. A. Rozikov},
     title = {Countably {Periodic} {Gibbs} {Measures} of the {Ising} {Model} on the {Cayley} {Tree}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {109--118},
     year = {2002},
     volume = {130},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a6/}
}
TY  - JOUR
AU  - U. A. Rozikov
TI  - Countably Periodic Gibbs Measures of the Ising Model on the Cayley Tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 109
EP  - 118
VL  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a6/
LA  - ru
ID  - TMF_2002_130_1_a6
ER  - 
%0 Journal Article
%A U. A. Rozikov
%T Countably Periodic Gibbs Measures of the Ising Model on the Cayley Tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 109-118
%V 130
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a6/
%G ru
%F TMF_2002_130_1_a6
U. A. Rozikov. Countably Periodic Gibbs Measures of the Ising Model on the Cayley Tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 109-118. http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a6/

[1] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR

[2] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR

[3] V. A. Malyshev, R. A. Minlos, Gibbsovskie sluchainye polya, Nauka, M., 1985 | MR

[4] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971

[5] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[6] U. A. Rozikov, TMF, 112:1 (1997), 170–175 | DOI | MR | Zbl

[7] P. M. Blekher, N. N. Ganikhodzhaev, Teoriya veroyatn. i ee primen., 35:2 (1990), 220–230 | MR | Zbl

[8] U. A. Rozikov, TMF, 118:1 (1999), 95–104 | DOI | MR | Zbl

[9] U. A. Rozikov, Sib. matem. zhurn., 39:2 (1998), 427–435 | MR | Zbl

[10] N. N. Ganikhodzhaev, U. A. Rozikov, Matem. sb., 190:2 (1999), 31–42 | DOI | MR | Zbl

[11] N. N. Ganikhodzhaev, DAN RUz., 1994, no. 5, 3–6 | MR

[12] N. N. Ganikhodjaev, U. A. Rozikov, Osaka J. Math., 37:2 (2000), 373–383 | MR

[13] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[14] S. Katsura, M. Takizava, Progr. Theor. Phys., 51 (1974), 82–98 | DOI

[15] L. J. de Jongh, A. R. Miedema, Adv. Phys., 23 (1974), 397–413 | DOI

[16] R. Feinman, Statisticheskaya mekhanika, Mir, M., 1978

[17] P. W. Kasteleyn, “Phase transitions”, Fundamental Problems in Statistical Mechanics, V. II. Proc. of 2nd NUFFIC Int. Summer Course (Noordwijk, The Netherlands, 1967), New York, 1968 | Zbl

[18] B. Zimm, P. Doty, K. Iso, Proc. Nat. Acad. Sci. USA, 45 (1959), 160 | DOI

[19] K. Khuang, Statisticheskaya mekhanika, Mir, M., 1966