Initial Boundary Value Problem for the KdV Equation on a~Semiaxis with Homogeneous Boundary Conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 31-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Korteweg–de Vries equation on the semiaxis with zero boundary conditions at $x=0$ and arbitrary smooth decreasing initial data. We show that the problem can be effectively integrated by the inverse scattering transform method if the associated linear equation has no discrete spectrum. Under these assumptions, we prove the global solvability of the problem.
@article{TMF_2002_130_1_a2,
     author = {I. T. Habibullin},
     title = {Initial {Boundary} {Value} {Problem} for the {KdV} {Equation} on {a~Semiaxis} with {Homogeneous} {Boundary} {Conditions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {31--53},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a2/}
}
TY  - JOUR
AU  - I. T. Habibullin
TI  - Initial Boundary Value Problem for the KdV Equation on a~Semiaxis with Homogeneous Boundary Conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 31
EP  - 53
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a2/
LA  - ru
ID  - TMF_2002_130_1_a2
ER  - 
%0 Journal Article
%A I. T. Habibullin
%T Initial Boundary Value Problem for the KdV Equation on a~Semiaxis with Homogeneous Boundary Conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 31-53
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a2/
%G ru
%F TMF_2002_130_1_a2
I. T. Habibullin. Initial Boundary Value Problem for the KdV Equation on a~Semiaxis with Homogeneous Boundary Conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 31-53. http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a2/