Initial Boundary Value Problem for the KdV Equation on a Semiaxis with Homogeneous Boundary Conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 31-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Korteweg–de Vries equation on the semiaxis with zero boundary conditions at $x=0$ and arbitrary smooth decreasing initial data. We show that the problem can be effectively integrated by the inverse scattering transform method if the associated linear equation has no discrete spectrum. Under these assumptions, we prove the global solvability of the problem.
@article{TMF_2002_130_1_a2,
     author = {I. T. Habibullin},
     title = {Initial {Boundary} {Value} {Problem} for the {KdV} {Equation} on {a~Semiaxis} with {Homogeneous} {Boundary} {Conditions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {31--53},
     year = {2002},
     volume = {130},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a2/}
}
TY  - JOUR
AU  - I. T. Habibullin
TI  - Initial Boundary Value Problem for the KdV Equation on a Semiaxis with Homogeneous Boundary Conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 31
EP  - 53
VL  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a2/
LA  - ru
ID  - TMF_2002_130_1_a2
ER  - 
%0 Journal Article
%A I. T. Habibullin
%T Initial Boundary Value Problem for the KdV Equation on a Semiaxis with Homogeneous Boundary Conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 31-53
%V 130
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a2/
%G ru
%F TMF_2002_130_1_a2
I. T. Habibullin. Initial Boundary Value Problem for the KdV Equation on a Semiaxis with Homogeneous Boundary Conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 31-53. http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a2/

[1] V. V. Khablov, Tr. seminara S. L. Soboleva, 2 (1979), 137–148 | MR

[2] A. S. Fokas, Sel. Math., New ser., 4:1 (1998), 31–68 | DOI | MR | Zbl

[3] B. Gürel, M. Gürses, I. Habibullin, J. Math. Phys., 36 (1995), 6809–6821 | DOI | MR | Zbl

[4] V. E. Adler, I. T. Khabibullin, A. B. Shabat, TMF, 110:1 (1997), 98–113 | DOI | MR | Zbl

[5] H. E. Moses, J. Math. Phys., 17:1 (1976), 73–75 | DOI | MR

[6] I. T. Khabibullin, TMF, 119:3 (1999), 397–404 | DOI | MR | Zbl

[7] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[8] I. Habibullin, A. Vil'danov, The KdV equation on a half-line, E-print solv-int/9910002

[9] N. P. Vekua, Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970 | MR | Zbl

[10] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[11] Yu. L. Shmulyan, UMN, 9:4 (1954), 243–248 | MR | Zbl

[12] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR

[13] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[14] A. B. Shabat, Diff. uravn., 15:10 (1979), 1824–1835 | MR