Integrable Chains and Hierarchies of Differential Evolution Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 15-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of integrable differential-difference systems is constructed based on auxiliary linear equations defined on sequences of Zakharov–Shabat formal dressing operators. We show that the auxiliary equations are compatible with the evolution equations for the Kadomtsev–Petviashvili (KP) hierarchy. The investigation results are used to elaborate a modified version of Krichever rational reductions for KP hierarchies.
@article{TMF_2002_130_1_a1,
     author = {A. K. Svinin},
     title = {Integrable {Chains} and {Hierarchies} of {Differential} {Evolution} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {15--30},
     year = {2002},
     volume = {130},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a1/}
}
TY  - JOUR
AU  - A. K. Svinin
TI  - Integrable Chains and Hierarchies of Differential Evolution Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2002
SP  - 15
EP  - 30
VL  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a1/
LA  - ru
ID  - TMF_2002_130_1_a1
ER  - 
%0 Journal Article
%A A. K. Svinin
%T Integrable Chains and Hierarchies of Differential Evolution Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2002
%P 15-30
%V 130
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a1/
%G ru
%F TMF_2002_130_1_a1
A. K. Svinin. Integrable Chains and Hierarchies of Differential Evolution Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 130 (2002) no. 1, pp. 15-30. http://geodesic.mathdoc.fr/item/TMF_2002_130_1_a1/

[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[2] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[3] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[4] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[5] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2 (1990), 183 | MR

[6] A. N. Leznov, A. B. Shabat, R. I. Yamilov, Phys. Lett. A, 174 (1993), 397 | DOI | MR

[7] V. E. Adler, A. B. Shabat, TMF, 111 (1997), 323 | DOI | Zbl

[8] D. Levi, J. Phys. A, 14 (1981), 1083 | DOI | MR | Zbl

[9] H. Aratyn, L. A. Ferreira, J. F. Gomez, A. H. Zimerman, Toda and Volterra lattice equations from discrete symmetries of KP hierarchies, E-print hep-th/9307147 | MR

[10] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125 (2000), 355 | DOI | Zbl

[11] O. I. Bogoyavlenskii, Oprokidyvayuschiesya solitony. Nelineinye integriruemye uravneniya, Nauka, M., 1991 | MR

[12] X.-B. Hu, H.-W. Tam, Inverse Problems, 17 (2001), 319 | DOI | MR | Zbl

[13] V. E. Zakharov, S. L. Musher, A. M. Rubenchik, Pisma v ZhETF, 19 (1974), 249

[14] L. A. Dickey, Lett. Math. Phys., 48 (1999), 277 | DOI | MR | Zbl

[15] I. M. Krichever, Funkts. analiz i ego prilozh., 29:2 (1995), 1 | MR | Zbl

[16] G. F. Helminck, J. W. van de Leur, Commun. Math. Phys., 193 (1998), 627 | DOI | MR | Zbl

[17] Y. Cheng, J. Math. Phys., 33 (1992), 3774 | DOI | MR | Zbl

[18] Y.-J. Zhang, Y. Cheng, J. Math. Phys., 35 (1994), 5869 | DOI | MR | Zbl

[19] A. Kundu, W. Strampp, W. Oevel, J. Math. Phys., 36 (1995), 2972 | DOI | MR | Zbl

[20] L. Bonora, C. S. Xiong, Nucl. Phys. B, 405 (1993), 191 | DOI | MR | Zbl

[21] H. Aratyn, E. Nissimov, S. Pacheva, Int. J. Mod. Phys. A, 12 (1997), 1265 | DOI | MR | Zbl

[22] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42 (1987), 3