Finiteness of the Discrete Spectrum of the Hamiltonian of a System of Three Arbitrary Particles on a Lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 3, pp. 415-431 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the number of bound states for the Hamiltonian of a system of three arbitrary particles interacting through pairwise attraction potentials on a three-dimensional lattice is finite in the cases where (1) none of the two-particle subsystems has a virtual level and (2) only one of the two-particle subsystems has a virtual level.
@article{TMF_2001_129_3_a4,
     author = {S. N. Lakaev and S. M. Samatov},
     title = {Finiteness of the {Discrete} {Spectrum} of the {Hamiltonian} of a {System} of {Three} {Arbitrary} {Particles} on a {Lattice}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {415--431},
     year = {2001},
     volume = {129},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a4/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - S. M. Samatov
TI  - Finiteness of the Discrete Spectrum of the Hamiltonian of a System of Three Arbitrary Particles on a Lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 415
EP  - 431
VL  - 129
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a4/
LA  - ru
ID  - TMF_2001_129_3_a4
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A S. M. Samatov
%T Finiteness of the Discrete Spectrum of the Hamiltonian of a System of Three Arbitrary Particles on a Lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 415-431
%V 129
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a4/
%G ru
%F TMF_2001_129_3_a4
S. N. Lakaev; S. M. Samatov. Finiteness of the Discrete Spectrum of the Hamiltonian of a System of Three Arbitrary Particles on a Lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 3, pp. 415-431. http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a4/

[1] D. R. Yafaev, DAN SSSR, 206:1 (1972), 68

[2] G. M. Zhislin, DAN SSSR, 207:1 (1972), 25 | MR | Zbl

[3] D. R. Yafaev, Matem. sb., 94 (1974), 567 | MR | Zbl

[4] Yu. N. Ovchinnikov, I. M. Sigal, Ann. Phys., 123 (1989), 274 | DOI | MR

[5] H. J. Tamura, Funct. Anal., 95 (1991), 433 | DOI | MR | Zbl

[6] A. V. Sobolev, Commun. Math. Phys., 156 (1993), 101 | DOI | MR | Zbl

[7] V. N. Efimov, YaF, 12:5 (1970), 1080

[8] D. R. Yafaev, TMF, 25:2 (1975), 185 | MR | Zbl

[9] S. A. Vugalter, G. M. Zhislin, Trudy MMO, 49, 1986, 92 | MR

[10] D. C. Mattis, Rev. Modern. Phys., 58:2 (1986), 361 | DOI | MR

[11] A. I. Mogilner, “The problem of a few quasi-particles in solid-state physics”, Applications of Self-Adjoint Extensions in Quantum Physics, Lect. Notes Phys., 324, eds. P. Exner, P. Šeba, Springer, Berlin, 1988, 160 | DOI | MR

[12] S. N. Lakaev, TMF, 89:1 (1991), 94 | MR

[13] S. N. Lakaev, Funkts. analiz i ego prilozh., 27:3 (1993), 15 | MR | Zbl

[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR