Superfield Quantization in the $Sp(2)$-Covariant Formalism
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 3, pp. 403-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the rules for the superfield $Sp(2)$-covariant quantization of arbitrary gauge theories to the case of gauge fixing by the generating equations for the gauge functional. We consider possible realizations of the extended antibrackets and show that only one of the realizations is consistent with the extended BRST symmetry transformations in the form of the supertranslations along the Grassmann coordinates of a superspace.
@article{TMF_2001_129_3_a3,
     author = {P. M. Lavrov and P. Yu. Moshin},
     title = {Superfield {Quantization} in the $Sp(2)${-Covariant} {Formalism}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--414},
     year = {2001},
     volume = {129},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a3/}
}
TY  - JOUR
AU  - P. M. Lavrov
AU  - P. Yu. Moshin
TI  - Superfield Quantization in the $Sp(2)$-Covariant Formalism
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 403
EP  - 414
VL  - 129
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a3/
LA  - ru
ID  - TMF_2001_129_3_a3
ER  - 
%0 Journal Article
%A P. M. Lavrov
%A P. Yu. Moshin
%T Superfield Quantization in the $Sp(2)$-Covariant Formalism
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 403-414
%V 129
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a3/
%G ru
%F TMF_2001_129_3_a3
P. M. Lavrov; P. Yu. Moshin. Superfield Quantization in the $Sp(2)$-Covariant Formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 3, pp. 403-414. http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a3/

[1] C. Becchi, A. Rouet, R. Stora, Phys. Lett. B, 25 (1974), 344 ; Commun. Math. Phys., 42 (1975), 127 ; И. В. Тютин, Калибровочная инвариантность в теории поля и статистической физике в операторном формализме, Препринт No 35, ФИАН, М., 1975 | DOI | DOI | MR

[2] G. Curci, R. Ferrari, Phys. Lett. B, 63 (1976), 91 ; I. Ojima, Progr. Theor. Phys. Suppl., 64 (1979), 625 | DOI | MR | DOI | MR

[3] I. A. Batalin, P. M. Lavrov, I. V. Tyutin, J. Math. Phys., 31 (1990), 1487 ; 32 (1991), 532 ; 32 (1991), 2513 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[4] P. M. Lavrov, TMF, 107 (1996), 229 | DOI | MR | Zbl

[5] I. A. Batalin, R. Marnelius, Phys. Lett. B, 350 (1995), 44 ; Nucl. Phys. B, 465 (1996), 521 ; I. A. Batalin, R. Marnelius, A. M. Semikhatov, Nucl. Phys. B, 446 (1995), 249 | DOI | MR | DOI | MR | Zbl | DOI | MR

[6] B. Geier, D. M. Gitman, P. M. Lavrov, TMF, 123 (2000), 476 | DOI | MR

[7] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 102 (1981), 27 ; Phys. Rev. D, 28 (1983), 2567 | DOI | MR | DOI | MR

[8] R. E. Kallosh, I. V. Tyutin, YaF, 17 (1973), 190 | MR

[9] I. V. Tyutin, Once again on the equivalence theorem, E-print hep-th/0001050 | MR

[10] B. Geyer, D. Mülsch, J. Math. Phys., 41 (2000), 7304 | DOI | MR | Zbl

[11] B. Geyer, P. M. Lavrov, D. Mülsch, J. Math. Phys., 40 (1999), 674 | DOI | MR | Zbl

[12] B. Devitt, Dinamicheskaya teoriya grupp i polei, Mir, M., 1987 | MR