Integrable Systems on Phase Spaces with a Nonflat Metric
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 3, pp. 373-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the integrability problem for evolution systems on phase spaces with a nonflat metric. We show that if the phase space is a sphere, the Hamiltonian systems are generated by the action of the Hamiltonian operators on the variations of the phase-space geodesics and the integrability problem for the evolution systems reduces to the integrability problem for the equations of motion for the frames on the phase space. We relate the bi-Hamiltonian representation of the evolution systems to the differential-geometric properties of the phase space.
@article{TMF_2001_129_3_a1,
     author = {E. I. Bogdanov},
     title = {Integrable {Systems} on {Phase} {Spaces} with a {Nonflat} {Metric}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--386},
     year = {2001},
     volume = {129},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a1/}
}
TY  - JOUR
AU  - E. I. Bogdanov
TI  - Integrable Systems on Phase Spaces with a Nonflat Metric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 373
EP  - 386
VL  - 129
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a1/
LA  - ru
ID  - TMF_2001_129_3_a1
ER  - 
%0 Journal Article
%A E. I. Bogdanov
%T Integrable Systems on Phase Spaces with a Nonflat Metric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 373-386
%V 129
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a1/
%G ru
%F TMF_2001_129_3_a1
E. I. Bogdanov. Integrable Systems on Phase Spaces with a Nonflat Metric. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 3, pp. 373-386. http://geodesic.mathdoc.fr/item/TMF_2001_129_3_a1/

[1] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[2] O. M. Bogoyavlenskii, UMN, 47 (1992), 107 | MR | Zbl

[3] E. I. Bogdanov, TMF, 91 (1992), 443 | MR

[4] E. I. Bogdanov, Izv. vuzov. Fizika, 1997, no. 5, 70 | MR | Zbl

[5] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, Nauka, M., 1964 | MR

[6] E. V. Ferapontov, TMF, 91 (1992), 452 | MR

[7] A. Kartan, Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | Zbl

[8] Dzh. L. Lem, Vvedenie v teoriyu solitonov, Mir, M., 1983 | MR

[9] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[10] A. T. Fomenko, Simplekticheskaya geometriya, MGU, M., 1988 | MR