BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 298-316

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Hopf algebra $\mathcal A$, we define the structures of differential complexes on two dual exterior Hopf algebras: (1) an exterior extension of $\mathcal A$ and (2) an exterior extension of the dual algebra $\mathcal A^*$. The Heisenberg double of these two exterior Hopf algebras defines the differential algebra for the Cartan differential calculus on $\mathcal A$. The first differential complex is an analogue of the de Rham complex. When $\mathcal A^*$ is a universal enveloping algebra of a Lie (super)algebra, the second complex coincides with the standard complex. The differential is realized as an (anti)commutator with a BRST operator $Q$. We give a recursive relation that uniquely defines the operator $Q$. We construct the BRST and anti-BRST operators explicitly and formulate the Hodge decomposition theorem for the case of the quantum Lie algebra $U_{\mathrm q}(gl(N))$.
@article{TMF_2001_129_2_a9,
     author = {A. P. Isaev and O. V. Ogievetskii},
     title = {BRST {Operator} for {Quantum} {Lie} {Algebras} and {Differential} {Calculus} on {Quantum} {Groups}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {298--316},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a9/}
}
TY  - JOUR
AU  - A. P. Isaev
AU  - O. V. Ogievetskii
TI  - BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 298
EP  - 316
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a9/
LA  - ru
ID  - TMF_2001_129_2_a9
ER  - 
%0 Journal Article
%A A. P. Isaev
%A O. V. Ogievetskii
%T BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 298-316
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a9/
%G ru
%F TMF_2001_129_2_a9
A. P. Isaev; O. V. Ogievetskii. BRST Operator for Quantum Lie Algebras and Differential Calculus on Quantum Groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 298-316. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a9/