Superbranes and Super Born–Infeld Theories as Nonlinear Realizations
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 278-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a few instructive examples to outline the characteristic features of the approach to superbranes and super Born–Infeld theories based on the concept of partial spontaneous breaking of global supersymmetry (PBGS). The examples include the $N=1$, $D=4$ supermembrane and the space-filling D2- and D3-branes. In addition to a short account of the available results for these systems, we present some new developments. For the supermembrane, we prove that the equation of motion following from the off-shell Goldstone superfield action is equivalent to the one derived directly from the nonlinear-realization formalism. We use a universal procedure inspired by the relation between linear and nonlinear realizations of the PBGS to obtain a new derivation of the off-shell Goldstone superfield actions for these systems.
@article{TMF_2001_129_2_a8,
     author = {E. A. Ivanov},
     title = {Superbranes and {Super} {Born{\textendash}Infeld} {Theories} as {Nonlinear} {Realizations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {278--297},
     year = {2001},
     volume = {129},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a8/}
}
TY  - JOUR
AU  - E. A. Ivanov
TI  - Superbranes and Super Born–Infeld Theories as Nonlinear Realizations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 278
EP  - 297
VL  - 129
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a8/
LA  - ru
ID  - TMF_2001_129_2_a8
ER  - 
%0 Journal Article
%A E. A. Ivanov
%T Superbranes and Super Born–Infeld Theories as Nonlinear Realizations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 278-297
%V 129
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a8/
%G ru
%F TMF_2001_129_2_a8
E. A. Ivanov. Superbranes and Super Born–Infeld Theories as Nonlinear Realizations. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 278-297. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a8/

[1] J. Bagger, J. Wess, Phys. Lett. B, 138 (1984), 105 | DOI | MR

[2] J. Hughes, J. Liu, J. Polchinski, Phys. Lett. B, 180 (1986), 370 | DOI | MR

[3] A. Achucarro, J. Gauntlett, K. Itoh, P. K. Townsend, Nucl. Phys. B, 314 (1989), 129 | DOI

[4] J. Bagger, A. Galperin, Phys. Lett. B, 336 (1994), 25 ; 412 (1997), 296 | DOI | MR | DOI

[5] J. Bagger, A. Galperin, Phys. Rev. D, 55 (1997), 1091 | DOI | MR

[6] M. Roček, A. Tseytlin, Phys. Rev. D, 59 (1999), 106001 | DOI | MR

[7] E. Ivanov, S. Krivonos, Phys. Lett. B, 453 (1999), 237 | DOI | MR | Zbl

[8] S. Bellucci, E. Ivanov, S. Krivonos, Phys. Lett. B, 460 (1999), 348 | DOI

[9] S. Bellucci, E. Ivanov, S. Krivonos, Fortschr. Phys., 48 (2000), 19 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] P. West, Automorphisms, nonlinear realizations, and branes, E-print hep-th/0001216 | MR

[11] S. Bellucci, E. Ivanov, S. Krivonos, Phys. Lett. B, 482 (2000), 233 | DOI | MR | Zbl

[12] S. Bellucci, E. Ivanov, S. Krivonos, Phys. Lett. B, 502 (2001), 279 | DOI | MR | Zbl

[13] S. Bellucci, E. Ivanov, S. Krivonos, Towards the complete $N=\nobreak2$ superfield Born–Infeld action with partially broken $N=\nobreak4$ supersymmetry, E-print hep-th/0101195 | MR

[14] I. Antoniadis, H. Partouche, T. R. Taylor, Phys. Lett. B, 372 (1996), 83 | DOI | MR | Zbl

[15] E. A. Ivanov, B. M. Zupnik, YaF, 62:6 (1999), 1110

[16] B. M. Zupnik, Phys. Lett. B, 461 (1999), 203 ; Б. М. Зупник, ТМФ, 123:1 (2000), 57 | DOI | DOI | Zbl

[17] F. Delduc, E. Ivanov, S. Krivonos, Nucl. Phys. B, 576 (2000), 196 | DOI | MR | Zbl

[18] E. Ivanov, S. Krivonos, O. Lechtenfeld, B. Zupnik, Nucl. Phys. B, 600 (2001), 235 | DOI | MR | Zbl

[19] A. Kapustnikov, A. Shcherbakov, Linear and nonlinear realizations of superbranes, E-print hep-th/0104196 | MR

[20] A. A. Tseytlin, Born–Infeld action, supersymmetry and string theory, E-print hep-th/9908105 | MR

[21] S. Cecotti, S. Ferrara, Phys. Lett. B, 187 (1987), 335 | DOI | MR

[22] S. Ketov, Mod. Phys. Lett. A, 14 (1999), 501 ; Class. Q Grav., 17 (2000), L91 | DOI | MR | DOI | MR | Zbl

[23] S. M. Kuzenko, S. Theisen, Fortschr. Phys., 49 (2001), 273 ; JHEP, 0003 (2000), 034 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl | DOI | MR

[24] M. Aganagic, C. Popescu, J. H. Schwarz, Nucl. Phys. B, 495 (1997), 99 | DOI | MR | Zbl

[25] S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177 (1969), 2239 ; C. Callan, S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177 (1969), 2247 ; Д. В. Волков, ЭЧАЯ, 4 (1973), 3; V. I. Ogievetsky, Acta Univ. Wratislaviensis {(Wroclaw)}, 207 (1974), 227 | DOI | DOI

[26] E. Ivanov, A. Kapustnikov, J. Phys. A, 11 (1978), 2375 ; Nucl. Phys. B, 333 (1990), 439 | DOI | MR | DOI | MR

[27] E. A. Ivanov, V. I. Ogievetskii, TMF, 25:2 (1975), 164 | MR

[28] E. A. Ivanov, S. O. Krivonos, V. M. Leviant, J. Phys. A, 22 (1989), 4201 | DOI | MR | Zbl

[29] D. Sorokin, Phys. Rep., 329 (2000), 1 | DOI | MR

[30] P. Pasti, D. Sorokin, M. Tonin, Nucl. Phys. B, 591 (2000), 109 ; Geometrical aspects of superbrane dynamics, E-print hep-th/0011020 | DOI | MR | Zbl

[31] I. Bandos, P. Pasti, A. Pokotilov, D. Sorokin, M. Tonin, Space filling Dirichlet 3-brane in $N=\nobreak2$, $D=\nobreak4$ superspace, E-print hep-th/0103152 | MR

[32] J. M. Drummond, P. S. Howe, Codimension zero superembeddings, E-print hep-th/0103191 | MR