@article{TMF_2001_129_2_a7,
author = {A. V. Zotov and Yu. B. Chernyakov},
title = {Integrable {Many-Body} {Systems} via the {Inosemtsev} {Limit}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {258--277},
year = {2001},
volume = {129},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a7/}
}
A. V. Zotov; Yu. B. Chernyakov. Integrable Many-Body Systems via the Inosemtsev Limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 258-277. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a7/
[1] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl
[2] Eric D'Hoker and D. H. Phong, Calogero–Moser and Toda systems for twisted and untwisted affine Lie algebras, E-print hep-th/9804125 | MR
[3] S. P. Khastgir, R. Sasaki, and K. Takasaki, Calogero–Moser Models. IV: Limits to Toda theory, E-print hep-th/9907102 | MR
[4] N. Nekrasov, Holomorphic bundles and many-body systems, E-print hep-th/9503157 | MR
[5] N. Hitchin, Duke Math. J., 54:1 (1987), 91 | DOI | MR | Zbl
[6] A. M. Levin and M. A. Olshanetsky, Hierarchies of isomonodromic deformations and Hitchin systems, E-print hep-th/9709207 | MR
[7] M. A. Olshanetsky, Generalized Hitchin systems and Knizhnik–Zamolodchikov–Bernard equation on elliptic curves, E-print hep-th/9510143 | MR
[8] E. Billey, J. Avan, O. Babelon, Exact Yangian symmetry in the classical Euler–Calogero–Moser model, E-print hep-th/9401117 | MR