Integrable Many-Body Systems via the Inosemtsev Limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 258-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Inozemtsev limit (IL), or the scaling limit, is known as a procedure applied to the elliptic Calogero-Moser model. It is a combination of the trigonometric limit, infinite shifts of particle coordinates, and coupling-constant rescalings. This results in an interaction of the exponential type. We show that the IL applied to the $sl(N,\mathbb C)$ elliptic Euler–Calogero–Moser model and to the elliptic Gaudin model produces new Toda-like systems of $N$ interacting particles endowed with additional degrees of freedom corresponding to a coadjoint orbit of $sl(n,\mathbb C)$. The limits corresponding to the complete degeneration of the orbital degrees of freedom lead to recovering only the known periodic and nonperiodic Toda systems. We classify the systems appearing in the IL in the $sl(3,\mathbb C)$ case. This classification is represented on a two-dimensional plane of parameters describing infinite shifts of particle coordinates. This space is subdivided into symmetric domains. In this picture, a mixture of the Toda and trigonometric Calogero-Sutherland potentials emerges on lower-dimensional domain walls. Because of obvious symmetries, this classification can be generalized to an arbitrary number of particles. We also apply the IL to the $sl(2,\mathbb C)$ elliptic Gaudin model on a two-punctured elliptic curve and discuss the main properties of its possible limits. The limits of Lax matrices are also considered.
@article{TMF_2001_129_2_a7,
     author = {A. V. Zotov and Yu. B. Chernyakov},
     title = {Integrable {Many-Body} {Systems} via the {Inosemtsev} {Limit}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {258--277},
     year = {2001},
     volume = {129},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a7/}
}
TY  - JOUR
AU  - A. V. Zotov
AU  - Yu. B. Chernyakov
TI  - Integrable Many-Body Systems via the Inosemtsev Limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 258
EP  - 277
VL  - 129
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a7/
LA  - ru
ID  - TMF_2001_129_2_a7
ER  - 
%0 Journal Article
%A A. V. Zotov
%A Yu. B. Chernyakov
%T Integrable Many-Body Systems via the Inosemtsev Limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 258-277
%V 129
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a7/
%G ru
%F TMF_2001_129_2_a7
A. V. Zotov; Yu. B. Chernyakov. Integrable Many-Body Systems via the Inosemtsev Limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 258-277. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a7/

[1] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl

[2] Eric D'Hoker and D. H. Phong, Calogero–Moser and Toda systems for twisted and untwisted affine Lie algebras, E-print hep-th/9804125 | MR

[3] S. P. Khastgir, R. Sasaki, and K. Takasaki, Calogero–Moser Models. IV: Limits to Toda theory, E-print hep-th/9907102 | MR

[4] N. Nekrasov, Holomorphic bundles and many-body systems, E-print hep-th/9503157 | MR

[5] N. Hitchin, Duke Math. J., 54:1 (1987), 91 | DOI | MR | Zbl

[6] A. M. Levin and M. A. Olshanetsky, Hierarchies of isomonodromic deformations and Hitchin systems, E-print hep-th/9709207 | MR

[7] M. A. Olshanetsky, Generalized Hitchin systems and Knizhnik–Zamolodchikov–Bernard equation on elliptic curves, E-print hep-th/9510143 | MR

[8] E. Billey, J. Avan, O. Babelon, Exact Yangian symmetry in the classical Euler–Calogero–Moser model, E-print hep-th/9401117 | MR