Reduction of $XXZ$ Model with Generalized Periodic Boundary Conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 207-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We examine the $XXZ$ model with generalized periodic boundary conditions and identify conditions for the truncation of the functional relations of the transfer-matrix fusion. After the truncation, the fusion relations become a closed system of functional equations. The energy spectrum can be obtained by solving these equations. We obtain the explicit form of the Hamiltonian eigenvalues for the special case where the anisotropy parameter $q^4=-1$.
@article{TMF_2001_129_2_a2,
     author = {A. A. Belavin and S. Yu. Gubanov},
     title = {Reduction of $XXZ$ {Model} with {Generalized} {Periodic} {Boundary} {Conditions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--218},
     year = {2001},
     volume = {129},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a2/}
}
TY  - JOUR
AU  - A. A. Belavin
AU  - S. Yu. Gubanov
TI  - Reduction of $XXZ$ Model with Generalized Periodic Boundary Conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 207
EP  - 218
VL  - 129
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a2/
LA  - ru
ID  - TMF_2001_129_2_a2
ER  - 
%0 Journal Article
%A A. A. Belavin
%A S. Yu. Gubanov
%T Reduction of $XXZ$ Model with Generalized Periodic Boundary Conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 207-218
%V 129
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a2/
%G ru
%F TMF_2001_129_2_a2
A. A. Belavin; S. Yu. Gubanov. Reduction of $XXZ$ Model with Generalized Periodic Boundary Conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 207-218. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a2/

[1] M. Goden, Volnovaya funktsiya Bete, Novokuznetskii fiziko-matematicheskii institut, Novokuznetsk, 2000 | MR

[2] V. Pasquier, H. Saleur, Nucl. Phys. B, 330 (1990), 523 | DOI | MR

[3] Yu-kui Zhou, Fusion hierarchy and finite-size corrections of $U_q(sl(2))$ invariant vertex models with open boundaries, E-print hep-th/9502053 | MR

[4] A. N. Kirillov, N. Yu. Reshetikhin, J. Phys. A, 20 (1987), 1565 | DOI | MR

[5] C. M. Yung, M. T. Batchelor, Nucl. Phys. B, 446 (1995), 461 | DOI | MR | Zbl

[6] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5 (1979), 13 | MR

[7] A. Belavin, Yu. Stroganov, Minimal Models of Integrable Lattice Theory and Truncated Functional Equations, ; Phys. Lett. B, 446 (1999), 281 E-print hep-th/9908050 | MR | DOI

[8] V. Bazhanov, S. Lukyanov, A. Zamolodchikov, Commun. Math. Phys., 177 (1996), 381 ; 190 (1997), 247 ; 200 (1999), 297 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[9] A. A. Belavin, S. Yu. Gubanov, B. L. Feigin, Truncation of functional relations in the $XXZ$-model, E-print hep-th/0008011 | MR

[10] E. K. Sklyanin, J. Phys. A, 21 (1988), 2375 | DOI | MR | Zbl

[11] E. Lusztig, Contemp. Math., 82, 1989, 59 | DOI | MR | Zbl

[12] A. Belavin, A. Polyakov, A. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl

[13] F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, and G. R. W. Quispel, J. Phys. A, 20 (1987), 6397 | DOI | MR

[14] P. P. Kulish, E. K. Sklyanin, J. Phys. A, 24 (1991), L435 | DOI | MR | Zbl

[15] Omar Foda, Michio Jimbo, Tetsuji Miwa, and all., Notes on highest weight modules of the elliptic algebra $A_{q,p}({\widehat sl}_2)$, E-print hep-th/9405058

[16] K. Kassel, Kvantovye gruppy, Fazis, M., 1999

[17] R. Grekhem, D. Knut, O. Patashnik, Konkretnaya matematika osnovanie informatiki, Mir, M., 1998 | MR