Observables in $2+1$ Gravity and Noncommutative Teichm\"uller Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 360-368
Voir la notice de l'article provenant de la source Math-Net.Ru
The algebra of quantum geodesics obtained by quantizing the coordinates of the Teichmüller spaces is the Nelson–Regge quantum $so_q(m)$ algebra of monodromies (Wilson loops) in the Chern–Simons theory, which provides an effective description of $(2+1)$-dimensional gravity.
@article{TMF_2001_129_2_a14,
author = {L. O. Chekhov},
title = {Observables in $2+1$ {Gravity} and {Noncommutative} {Teichm\"uller} {Spaces}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {360--368},
publisher = {mathdoc},
volume = {129},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a14/}
}
L. O. Chekhov. Observables in $2+1$ Gravity and Noncommutative Teichm\"uller Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 360-368. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a14/