Observables in $2+1$ Gravity and Noncommutative Teichm\"uller Spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 360-368

Voir la notice de l'article provenant de la source Math-Net.Ru

The algebra of quantum geodesics obtained by quantizing the coordinates of the Teichmüller spaces is the Nelson–Regge quantum $so_q(m)$ algebra of monodromies (Wilson loops) in the Chern–Simons theory, which provides an effective description of $(2+1)$-dimensional gravity.
@article{TMF_2001_129_2_a14,
     author = {L. O. Chekhov},
     title = {Observables in $2+1$ {Gravity} and {Noncommutative} {Teichm\"uller} {Spaces}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--368},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a14/}
}
TY  - JOUR
AU  - L. O. Chekhov
TI  - Observables in $2+1$ Gravity and Noncommutative Teichm\"uller Spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 360
EP  - 368
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a14/
LA  - ru
ID  - TMF_2001_129_2_a14
ER  - 
%0 Journal Article
%A L. O. Chekhov
%T Observables in $2+1$ Gravity and Noncommutative Teichm\"uller Spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 360-368
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a14/
%G ru
%F TMF_2001_129_2_a14
L. O. Chekhov. Observables in $2+1$ Gravity and Noncommutative Teichm\"uller Spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 360-368. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a14/