$XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 345-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a finite $XXZ$ spin chain with periodic boundary conditions and an odd number of sites. It appears that for the special value of the asymmetry parameter $\Delta=-1/2$, the ground state of this system described by the Hamiltonian $H_{xxz}=-\sum_{j=1}^{N}\bigl\{\sigma_j^{x}\sigma_{j+1}^{x}+ \sigma_j^{y}\sigma_{j+1}^{y}-\frac12sigma_j^z\sigma_{j+1}^z\bigr\}$ has the energy $E_0=-3N/2$. Although the ground state is antiferromagnetic, we can find the corresponding solution of the Bethe equations. Specifically, we can explicitly construct a trigonometric polynomial $Q(u)$ of degree $n=(N-1)/2$, whose zeros are the parameters of the Bethe wave function for the ground state of the system. As is known, this polynomial satisfies the Baxter $T$$Q$ equation. This equation also has a second independent solution corresponding to the same eigenvalue of the transfer matrix T. We use this solution to find the derivative of the ground-state energy of the $XXZ$ chain with respect to the crossing parameter $\eta$. This derivative is directly related to one of the spin-spin correlators, which appears to be $\langle\sigma_j^z\sigma_{j+1}^z\rangle=-1/2+3/2N^2$. In turn, this correlator gives the average number of spin strings for the ground state of the chain $\langle N_{\text{string}}\rangle={(3/8)(N-1)/N}$. All these simple formulas fail if the number $N$ of chain sites is even.
@article{TMF_2001_129_2_a13,
     author = {Yu. G. Stroganov},
     title = {$XXZ$ {Spin} {Chain} with the {Asymmetry} {Parameter} $\Delta=-1/2$: {Evaluation} of the {Simplest} {Correlators}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--359},
     year = {2001},
     volume = {129},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a13/}
}
TY  - JOUR
AU  - Yu. G. Stroganov
TI  - $XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 345
EP  - 359
VL  - 129
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a13/
LA  - ru
ID  - TMF_2001_129_2_a13
ER  - 
%0 Journal Article
%A Yu. G. Stroganov
%T $XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 345-359
%V 129
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a13/
%G ru
%F TMF_2001_129_2_a13
Yu. G. Stroganov. $XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 345-359. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a13/

[1] Yu. G. Stroganov, J. Phys. A, 34 (2001), L179 | DOI | MR | Zbl

[2] R. J. Baxter, Ann. Phys., 70 (1972), 323 | DOI | MR

[3] R. J. Baxter, Adv. Stud. Pure Math., 19, 1989, 95 | MR | Zbl

[4] F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, G. R. W. Quispel, J. Phys. A, 20 (1987), 6397 | DOI | MR

[5] H. Hinrichsen, P. P. Martin, V. Rittenberg, M. Scheunert, Nucl. Phys. B, 415 (1994), 533 | DOI | MR | Zbl

[6] M. A. Martin-Delgado, G. Sierra, Phys. Rev. Lett., 76 (1996), 1146 | DOI

[7] V. Fridkin, Yu. G. Stroganov, Don Zagier, J. Phys. A, 33 (2000), L121 | DOI | MR | Zbl

[8] A. A. Belavin, Yu. G. Stroganov, Phys. Lett. B, 466 (1999), 281 | DOI | MR | Zbl

[9] V. Fridkin, Yu. G. Stroganov, Don Zagier, J. Stat. Phys., 102 (2001), 781 | DOI | MR | Zbl

[10] F. C. Alcaraz, M. N. Barber, M. T. Batchelor, Ann. Phys., 182 (1988), 280 | DOI | MR | Zbl

[11] P. P. Kulish, E. K. Sklyanin, Phys. Lett. A, 70 (1979), 461 | DOI | MR

[12] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 3185 | DOI | MR | Zbl

[13] I. Krichiver, O. Lipan, P. Wiegmann, A. Zabrodin, Commun. Math. Phys., 188 (1997), 267 | DOI | MR

[14] G. P. Pronko, Yu. G. Stroganov, J. Phys. A, 32 (1999), 2333 | DOI | MR | Zbl

[15] V. E. Korepin, A. G. Izergin, N. M. Bogoliubov, Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[16] M. T. Batchelor, J. de Gier, B. Nienhuis, J. Phys. A, 34 (2001), L265 | DOI | MR | Zbl

[17] A. V. Razumov, Yu. G. Stroganov, J. Phys. A, 34 (2001), 3185 ; E-print cond-mat/0102247 | DOI | MR | Zbl

[18] A. V. Razumov, Yu. G. Stroganov, Combinatorial nature of ground state vector of $O(1)$ loop model, E-print math.CO/0104216

[19] L. D. Faddeev, L. A. Takhtajan, Phys. Lett. A, 85 (1981), 375 | DOI | MR

[20] M. Baake, P. Christe, V. Rittenberg, Nucl. Phys. B, 300 (1988), 637 | DOI | MR

[21] A. Bugrij, Private communication, 2000

[22] A. Doikou, L. Mezincescu, R. I. Nepomechie, J. Phys. A, 30 (1997), L507 | DOI | MR | Zbl

[23] K. Bärwinkel, H.-J. Schmidt, J. Schnack, J. Magn. Mater., 220 (2000), 227 | DOI

[24] G. Albertini, Is the purely biquadratic spin 1 chain always massive?, E-print cond-mat/0012439

[25] M. Henkel, U. Schollwock, Universal finite-size scaling amplitudes in anisotropic scaling, E-print cond-mat/0010061 | MR

[26] R. P. Feynman, Phys. Rev., 56 (1939), 340 | DOI | Zbl

[27] J. D. Johnson, S. Krinsky, B. M. McCoy, Phys. Rev. A, 8 (1973), 2526 ; M. Gaudin, B. M. McCoy, T. T. Wu, Phys. Rev. D, 23 (1981), 417 | DOI | DOI | MR