$XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 345-359

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a finite $XXZ$ spin chain with periodic boundary conditions and an odd number of sites. It appears that for the special value of the asymmetry parameter $\Delta=-1/2$, the ground state of this system described by the Hamiltonian $H_{xxz}=-\sum_{j=1}^{N}\bigl\{\sigma_j^{x}\sigma_{j+1}^{x}+ \sigma_j^{y}\sigma_{j+1}^{y}-\frac12sigma_j^z\sigma_{j+1}^z\bigr\}$ has the energy $E_0=-3N/2$. Although the ground state is antiferromagnetic, we can find the corresponding solution of the Bethe equations. Specifically, we can explicitly construct a trigonometric polynomial $Q(u)$ of degree $n=(N-1)/2$, whose zeros are the parameters of the Bethe wave function for the ground state of the system. As is known, this polynomial satisfies the Baxter $T$$Q$ equation. This equation also has a second independent solution corresponding to the same eigenvalue of the transfer matrix T. We use this solution to find the derivative of the ground-state energy of the $XXZ$ chain with respect to the crossing parameter $\eta$. This derivative is directly related to one of the spin-spin correlators, which appears to be $\langle\sigma_j^z\sigma_{j+1}^z\rangle=-1/2+3/2N^2$. In turn, this correlator gives the average number of spin strings for the ground state of the chain $\langle N_{\text{string}}\rangle={(3/8)(N-1)/N}$. All these simple formulas fail if the number $N$ of chain sites is even.
@article{TMF_2001_129_2_a13,
     author = {Yu. G. Stroganov},
     title = {$XXZ$ {Spin} {Chain} with the {Asymmetry} {Parameter} $\Delta=-1/2$: {Evaluation} of the {Simplest} {Correlators}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--359},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a13/}
}
TY  - JOUR
AU  - Yu. G. Stroganov
TI  - $XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 345
EP  - 359
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a13/
LA  - ru
ID  - TMF_2001_129_2_a13
ER  - 
%0 Journal Article
%A Yu. G. Stroganov
%T $XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 345-359
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a13/
%G ru
%F TMF_2001_129_2_a13
Yu. G. Stroganov. $XXZ$ Spin Chain with the Asymmetry Parameter $\Delta=-1/2$: Evaluation of the Simplest Correlators. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 345-359. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a13/