Self-Dual Hamiltonians as Deformations of Free Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 327-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate the problem of finding self-dual Hamiltonians (associated with integrable systems) as deformations of free systems given on various symplectic manifolds and discuss several known explicit examples including the recently found double elliptic Hamiltonians. We consider self-duality as the basic principle, while duality in integrable systems (of the Toda/Calogero/Ruijsenaars type) comes as a secondary notion (degenerations of self-dual systems).
@article{TMF_2001_129_2_a11,
     author = {A. D. Mironov},
     title = {Self-Dual {Hamiltonians} as {Deformations} of {Free} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {327--332},
     year = {2001},
     volume = {129},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a11/}
}
TY  - JOUR
AU  - A. D. Mironov
TI  - Self-Dual Hamiltonians as Deformations of Free Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 327
EP  - 332
VL  - 129
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a11/
LA  - ru
ID  - TMF_2001_129_2_a11
ER  - 
%0 Journal Article
%A A. D. Mironov
%T Self-Dual Hamiltonians as Deformations of Free Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 327-332
%V 129
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a11/
%G ru
%F TMF_2001_129_2_a11
A. D. Mironov. Self-Dual Hamiltonians as Deformations of Free Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 327-332. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a11/

[1] N. Seiberg, E. Witten, Nucl. Phys. B, 426 (1994), 19 ; 431, 484 | DOI | MR | Zbl | DOI | MR | Zbl

[2] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355 (1995), 466 | DOI | MR | Zbl

[3] H. W. Braden, I. M. Krichever (Eds.), Integrability: The Seiberg–Witten and Whitham Equations, Gordon and Breach, Amsterdam, 2000 | MR | Zbl

[4] H. W. Braden, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 573 (2000), 553 | DOI | MR | Zbl

[5] V. Fock, A. Gorsky, N. Nekrasov, V. Rubtsov, JHEP, 0007 (2000), 028 | DOI | MR

[6] A. Gorsky, N. Nekrasov, V. Rubtsov, Hilbert schemes, separated variables, and D-branes, E-print hep-th/9901089 | MR

[7] S. N. Ruijsenaars, Commun. Math. Phys., 115 (1988), 127 | DOI | MR | Zbl

[8] A. Mironov, A. Morozov, Phys. Lett. B, 475 (2000), 71 ; Double elliptic systems: problems and perspectives, ; A. Gorsky, V. Rubtsov, Dualities in integrable systems: geometric aspects, E-print hep-th/0001168E-print hep-th/0103004 | DOI | MR | Zbl | MR

[9] A. Gorsky, A. Mironov, Integrable many-body systems and gauge theories, E-print hep-th/0011197 | MR

[10] O. Babelon, D. Bernard, Phys. Lett. B, 317 (1993), 363 | DOI | MR | Zbl

[11] V. Fock, “Three remarks on group invariants related to flat connections”, Geometry and Integrable Models, eds. P. Pyatov, S. Solodukhin, World Scientific, Singapore, 1995, 20 ; V. Fock, A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and $r$-matrix, E-print math/9802054 | MR | MR