@article{TMF_2001_129_2_a11,
author = {A. D. Mironov},
title = {Self-Dual {Hamiltonians} as {Deformations} of {Free} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {327--332},
year = {2001},
volume = {129},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a11/}
}
A. D. Mironov. Self-Dual Hamiltonians as Deformations of Free Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 327-332. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a11/
[1] N. Seiberg, E. Witten, Nucl. Phys. B, 426 (1994), 19 ; 431, 484 | DOI | MR | Zbl | DOI | MR | Zbl
[2] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Phys. Lett. B, 355 (1995), 466 | DOI | MR | Zbl
[3] H. W. Braden, I. M. Krichever (Eds.), Integrability: The Seiberg–Witten and Whitham Equations, Gordon and Breach, Amsterdam, 2000 | MR | Zbl
[4] H. W. Braden, A. Marshakov, A. Mironov, A. Morozov, Nucl. Phys. B, 573 (2000), 553 | DOI | MR | Zbl
[5] V. Fock, A. Gorsky, N. Nekrasov, V. Rubtsov, JHEP, 0007 (2000), 028 | DOI | MR
[6] A. Gorsky, N. Nekrasov, V. Rubtsov, Hilbert schemes, separated variables, and D-branes, E-print hep-th/9901089 | MR
[7] S. N. Ruijsenaars, Commun. Math. Phys., 115 (1988), 127 | DOI | MR | Zbl
[8] A. Mironov, A. Morozov, Phys. Lett. B, 475 (2000), 71 ; Double elliptic systems: problems and perspectives, ; A. Gorsky, V. Rubtsov, Dualities in integrable systems: geometric aspects, E-print hep-th/0001168E-print hep-th/0103004 | DOI | MR | Zbl | MR
[9] A. Gorsky, A. Mironov, Integrable many-body systems and gauge theories, E-print hep-th/0011197 | MR
[10] O. Babelon, D. Bernard, Phys. Lett. B, 317 (1993), 363 | DOI | MR | Zbl
[11] V. Fock, “Three remarks on group invariants related to flat connections”, Geometry and Integrable Models, eds. P. Pyatov, S. Solodukhin, World Scientific, Singapore, 1995, 20 ; V. Fock, A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and $r$-matrix, E-print math/9802054 | MR | MR