A New Integral Equation Form of Integrable Reductions of the Einstein Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 184-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We further develop the monodromy transformation method for analyzing hyperbolic and elliptic integrable reductions of the Einstein equations. The compatibility conditions for alternative representations of solutions of the associated linear systems with a spectral parameter in terms of a pair of dressing (“scattering”) matrices yield a new set of linear (quasi-Fredholm) integral equations that are equivalent to the symmetry-reduced Einstein equations. In contrast to the previously derived singular integral equations constructed using conserved (nonevolving) monodromy data for fundamental solutions of the associated linear systems, the scalar kernels of the new equations involve functional parameters of a different type, the evolving (“dynamic”) monodromy data for scattering matrices. In the context of the Goursat problem, these data are completely determined for hyperbolic reductions by the characteristic initial data for the fields. The field components are expressed in quadratures in terms of solutions of the new integral equations.
@article{TMF_2001_129_2_a1,
     author = {G. A. Alekseev},
     title = {A {New} {Integral} {Equation} {Form} of {Integrable} {Reductions} of the {Einstein} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {184--206},
     year = {2001},
     volume = {129},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a1/}
}
TY  - JOUR
AU  - G. A. Alekseev
TI  - A New Integral Equation Form of Integrable Reductions of the Einstein Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 184
EP  - 206
VL  - 129
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a1/
LA  - ru
ID  - TMF_2001_129_2_a1
ER  - 
%0 Journal Article
%A G. A. Alekseev
%T A New Integral Equation Form of Integrable Reductions of the Einstein Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 184-206
%V 129
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a1/
%G ru
%F TMF_2001_129_2_a1
G. A. Alekseev. A New Integral Equation Form of Integrable Reductions of the Einstein Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 184-206. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a1/

[1] F. J. Ernst, Phys. Rev., 167:2 (1968), 1175 | DOI

[2] F. J. Ernst, Phys. Rev., 168:2 (1968), 1415 | DOI

[3] I. Hauser, F. J. Ernst, J. Math. Phys., 30 (1989), 872 ; 2322 ; 31 (1990), 871 ; 32 (1991), 198 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[4] G. A. Alekseev, DAN SSSR, 268 (1983), 7347

[5] D. Maison, Phys. Rev. Lett., 41 (1978), 521 ; J. Math. Phys., 20 (1979), 871 | DOI | MR | DOI | MR

[6] V. A. Belinskii, V. E. Zakharov, ZhETF, 75 (1978), 1555 ; 77 (1979), 3 | MR | MR

[7] B. K. Harrison, Phys. Rev. Lett., 41 (1978), 1197 ; J. Math. Phys., 24 (1983), 2178 | DOI | MR | DOI | MR | Zbl

[8] G. Neugebauer, J. Phys. A, 12 (1979), L67 ; 13 (1980), 1737 ; L19 | DOI | MR | DOI | MR | MR

[9] W. Kinnersley, J. Math. Phys., 18 (1977), 1529 | DOI

[10] W. Kinnersley, D. M. Chitre, J. Math. Phys., 18 (1977), 1538 ; 19 (1978), 1927 ; 2037 | DOI

[11] I. Hauser, F. J. Ernst, Phys. Rev. D, 20 (1979), 362 ; 1783 | DOI | MR | MR

[12] V. A. Belinskii, ZhETF, 77 (1979), 1239

[13] G. A. Alekseev, Pisma v ZhETF, 32 (1980), 301

[14] I. Bakas, Nucl. Phys. B, 428 (1994), 374 ; E-print hep-th/9402016 | DOI | MR | Zbl

[15] D. V. Gal'tsov, Phys. Rev. Lett., 74 (1995), 2863 ; E-print hep-th/9410217 | DOI | MR | Zbl | MR

[16] G. A. Alekseev, “Monodromy transform approach to solution of some field equations in General Relativity and string theory”, Proc. of the Workshop on “Nonlinearity, Integrability and all that: Twenty years after NEEDS'79”, eds. M. Boiti at al., World Scientific, Singapore, 2000, 12 ; E-print gr-qc/9911045 | DOI | MR | Zbl

[17] F. J. Ernst, http://pages.slic.com/gravity

[18] G. A. Alekseev, DAN SSSR, 283 (1985), 577

[19] G. A. Alekseev, Tr. MIAN, 176, 1987, 211 | Zbl

[20] I. Hauser, F. J. Ernst, Gen. Relat. Gravit., 33 (2001), 195 ; ; Group structure of the solution manifold of the hyperbolic Ernst equation – general study of the subject and detailed elaboration of mathematical proofs, E-print gr-qc/0002049E-print gr-qc/9903104 | DOI | MR | Zbl

[21] G. A. Alekseev, Ann. Phys. (Leipzig), 9. Spec. Issue (2000), SI-17; E-print gr-qc/9912109

[22] G. A. Aleksejev, “Explicit form of the extended family of electrovacuum solutions with arbitrary number of parameters”, 13th Intern. Conf. on General Relativity and Gravitation, Abstracts of Contributed Papers, eds. P. W. Lamberti and O. E. Ortiz, Huerta Grande, Cordoba, Argentina, 1992, 3

[23] G. A. Alekseev, A. A. Garcia, Phys. Rev. D, 53 (1996), 1853 | DOI | MR

[24] G. A. Alekseev, J. B. Griffiths, Phys. Rev. Lett., 84 (2000), 5247 ; E-print gr-qc/0004034 | DOI | MR

[25] G. A. Alekseev, Physica D, 152–153 (2001), 97 | DOI | MR | Zbl

[26] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 6 (1974), 43 ; 13 (1979), 13 | Zbl

[27] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74 (1978), 1953

[28] I. M. Krichever, DAN SSSR, 253 (1980), 288 | MR | Zbl

[29] G. A. Aleksejev, “Integrability of the boundary value problems for the Ernst equations”, Proc. of the 8th International Workshop NEEDS-92, eds. V. Makhankov, I. Puzynin, and O. Pashaev, World Scientific, Singapore, 1993, 5

[30] J. B. Griffiths, Colliding Plane Waves in General Relativity, Oxford University Press, Oxford, 1991 | MR | Zbl

[31] G. A. Alekseev, J. B. Griffiths, Solving the characteristic initial value problem for colliding plane gravitational and electromagnetic waves, E-print gr-qc/0105029 | MR