Lagrangian Chains and Canonical B\"acklund Transformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 163-183
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Darboux transformations for operators of arbitrary order and construct the general theory of Bäcklund transformations based on the Lagrangian formalism. The dressing chain for the Boussinesq equation and its reduction are demonstrative examples for the suggested general theory. We also discuss the well-known Bäcklund transformations for classical soliton equations.
@article{TMF_2001_129_2_a0,
author = {V. E. Adler and V. G. Marikhin and A. B. Shabat},
title = {Lagrangian {Chains} and {Canonical} {B\"acklund} {Transformations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--183},
publisher = {mathdoc},
volume = {129},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a0/}
}
TY - JOUR AU - V. E. Adler AU - V. G. Marikhin AU - A. B. Shabat TI - Lagrangian Chains and Canonical B\"acklund Transformations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 163 EP - 183 VL - 129 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a0/ LA - ru ID - TMF_2001_129_2_a0 ER -
V. E. Adler; V. G. Marikhin; A. B. Shabat. Lagrangian Chains and Canonical B\"acklund Transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 163-183. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a0/