Lagrangian Chains and Canonical Bäcklund Transformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 163-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Darboux transformations for operators of arbitrary order and construct the general theory of Bäcklund transformations based on the Lagrangian formalism. The dressing chain for the Boussinesq equation and its reduction are demonstrative examples for the suggested general theory. We also discuss the well-known Bäcklund transformations for classical soliton equations.
@article{TMF_2001_129_2_a0,
     author = {V. E. Adler and V. G. Marikhin and A. B. Shabat},
     title = {Lagrangian {Chains} and {Canonical} {B\"acklund} {Transformations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--183},
     year = {2001},
     volume = {129},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a0/}
}
TY  - JOUR
AU  - V. E. Adler
AU  - V. G. Marikhin
AU  - A. B. Shabat
TI  - Lagrangian Chains and Canonical Bäcklund Transformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 163
EP  - 183
VL  - 129
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a0/
LA  - ru
ID  - TMF_2001_129_2_a0
ER  - 
%0 Journal Article
%A V. E. Adler
%A V. G. Marikhin
%A A. B. Shabat
%T Lagrangian Chains and Canonical Bäcklund Transformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 163-183
%V 129
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a0/
%G ru
%F TMF_2001_129_2_a0
V. E. Adler; V. G. Marikhin; A. B. Shabat. Lagrangian Chains and Canonical Bäcklund Transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 2, pp. 163-183. http://geodesic.mathdoc.fr/item/TMF_2001_129_2_a0/

[1] A. B. Shabat, TMF, 121:1 (1999), 165–176 | DOI | MR | Zbl

[2] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego prilozh., 27:2 (1993), 1–21 | MR | Zbl

[3] J. Weiss, J. Math. Phys., 28:9 (1987), 2025–2039 | DOI | MR | Zbl

[4] Xing-Biao Hu, Hon-Wah Tam, Inverse Problems, 17 (2001), 319–327 | DOI | MR

[5] A. K. Svinin, Inverse Problems, 17 (2001), 307–318 | DOI | MR | Zbl

[6] O. I. Bogoyavlenskii, Oprokidyvayuschiesya solitony. Nelineinye integriruemye uravneniya, Nauka, M., 1991 | MR

[7] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4 (1987), 3–53 | MR

[8] V. E. Adler, A. B. Shabat, TMF, 112:2 (1997), 179–194 | DOI | MR | Zbl

[9] V. G. Marikhin, Pisma v ZhETF, 66 (1997), 673–678

[10] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR

[11] R. I. Yamilov, “Classification of Toda type scalar lattices”, Proc. NEEDS'92, eds. V. Makhankov, I. Puzynin, and O. Pashaev, World Scientific, Singapore, 1993, 423–431

[12] V. E. Adler, TMF, 124:1 (2000), 48–61 | DOI | MR | Zbl

[13] E. K. Sklyanin, Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[14] V. E. Adler, Int. Math. Research Notices, 1998, no. 1, 1–4 | DOI | Zbl

[15] R. Conte, “Exact solutions of nonlinear partial differential equations by singularity analysis”, Direct and inverse methods in nonlinear evolution equations, CIME school (Cetraro, 5–12 September 1999), ed. A. Greco, Springer, Berlin, 2000 ; E-print nlin.SI/0009024 | MR

[16] C. Rogers, S. Carillo, Physica Scripta, 36 (1987), 865–869 | DOI | MR | Zbl

[17] M. C. Nucci, J. Phys. A, 22 (1989), 2897–2913 | DOI | MR | Zbl

[18] J. Satsuma, D. J. Kaup, J. Phys. Soc. Japan, 43 (1977), 692–697 | DOI | MR