$\hbar$-Expansion for Bound States Described by the Relativistic Three-Dimensional Two-Particle Quasi-Potential Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 106-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $\hbar$-expansion method is used to find Regge trajectories and mass eigenvalues within of bound states the framework of the relativistic three-dimensional two-particle quasi-potential equation. The results are applied to the Cornell and power-law potentials in the problem of determining the mass spectrum of heavy quarkoniums.
@article{TMF_2001_129_1_a9,
     author = {A. A. Atanasov and A. T. Marinov},
     title = {$\hbar${-Expansion} for {Bound} {States} {Described} by the {Relativistic} {Three-Dimensional} {Two-Particle} {Quasi-Potential} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {106--115},
     year = {2001},
     volume = {129},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a9/}
}
TY  - JOUR
AU  - A. A. Atanasov
AU  - A. T. Marinov
TI  - $\hbar$-Expansion for Bound States Described by the Relativistic Three-Dimensional Two-Particle Quasi-Potential Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 106
EP  - 115
VL  - 129
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a9/
LA  - ru
ID  - TMF_2001_129_1_a9
ER  - 
%0 Journal Article
%A A. A. Atanasov
%A A. T. Marinov
%T $\hbar$-Expansion for Bound States Described by the Relativistic Three-Dimensional Two-Particle Quasi-Potential Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 106-115
%V 129
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a9/
%G ru
%F TMF_2001_129_1_a9
A. A. Atanasov; A. T. Marinov. $\hbar$-Expansion for Bound States Described by the Relativistic Three-Dimensional Two-Particle Quasi-Potential Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 106-115. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a9/

[1] V. G. Kadyshevskii, R. M. Mir-Kasimov, Kh. B. Skachkov, EChAYa, 2:3 (1972), 636

[2] E. P. Zhidkov, V. G. Kadyshevskii, Yu. V. Katyshev, TMF, 3:2 (1970), 191 | MR

[3] N. B. Skachkov, I. L. Solovtsov, YaF, 31:5 (1980), 1332

[4] A. A. Atanasov, E. S. Pisanova, TMF, 89:2 (1991), 222

[5] N. A. Kobilinsky, S. S. Stepanov, R. S. Tutik, Z. Phys. C, 47:3 (1990), 469 | DOI | MR

[6] S. S. Stepanov, R. S. Tutik, TMF, 90:2 (1992), 208 | MR

[7] N. A. Kobilinsky, S. S. Stepanov, R. S. Tutik, $\hbar$-expansion for Regge-trajectories. 1: The Schrödinger equation, Preprint ITP–89–57E, Kiev, 1989 | MR

[8] A. A. Atanasov, A. T. Marinov, YaF, 61:4 (1998), 734

[9] E. D. Kagarmanov, R. M. Mir-Kasimov, Sh. M. Nagiev, Can we treat the confinement as a pure relativistic effect?, Preprint ICTP IC/89/43, Triest, 1989

[10] W. Buchmuller, S. H. H. Tye, The quark-antiquark potential and quantum chromodynamics, Preprint FERMILAB – conf 81/38 – THY, Batavia, 1981

[11] B. Baumgartner, H. Grosse, A. Martin, Phys. Lett. B, 146:5 (1984), 363 | DOI | MR

[12] F. Paccanoni, S. S. Stepanov, R. S. Tutik, EuroPhys. Lett., 23:8 (1993), 543 | DOI

[13] EuroPhys. J. C, 3:1–4 (1998), 1–794, Review of Particle Physics

[14] E. A. Dei, V. N. Kapshai, N. B. Skachkov, TMF, 69:1 (1986), 55 | MR

[15] N. B. Skachkov, I. L. Solovtsov, EChAYa, 9:1 (1978), 5 | MR