Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and “Steplike” Initial Data
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 38-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that “steplike” solutions of the Korteweg–de Vries equation with a self-consistent source can be found by the inverse scattering method for the Sturm–Liouville operator on the entire real line.
@article{TMF_2001_129_1_a4,
     author = {G. U. Urazboev and A. B. Khasanov},
     title = {Integrating the {Korteweg{\textendash}de} {Vries} {Equation} with a {Self-Consistent} {Source} and {{\textquotedblleft}Steplike{\textquotedblright}} {Initial} {Data}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--54},
     year = {2001},
     volume = {129},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a4/}
}
TY  - JOUR
AU  - G. U. Urazboev
AU  - A. B. Khasanov
TI  - Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and “Steplike” Initial Data
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 38
EP  - 54
VL  - 129
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a4/
LA  - ru
ID  - TMF_2001_129_1_a4
ER  - 
%0 Journal Article
%A G. U. Urazboev
%A A. B. Khasanov
%T Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and “Steplike” Initial Data
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 38-54
%V 129
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a4/
%G ru
%F TMF_2001_129_1_a4
G. U. Urazboev; A. B. Khasanov. Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and “Steplike” Initial Data. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 38-54. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a4/

[1] C. S. Gardner, I. M. Green, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI | Zbl

[2] P. D. Laks, Matematika, 13 (1969), 128

[3] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 118

[4] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Stud. Appl. Math., 53 (1974), 249 | DOI | MR | Zbl

[5] A. Nyuell, “Obratnoe preobrazovanie rasseyaniya”, Solitony, ed. R. Bullaf, F. Kodri, Mir, M., 1983, 193

[6] F. Kalodzhero, A. Degasperis, Spektralnye preobrazovaniya i solitony. Metody resheniya i issledovaniya nelineinykh evolyutsionnykh uravnenii, Mir, M., 1985 | MR

[7] E. Ya. Khruslov, Matem. sb., 99(141):2 (1976), 261 | MR | Zbl

[8] A. V. Gurevich, A. P. Pitaevskii, Pisma v ZhETF, 17:5 (1973), 268

[9] A. V. Gurevich, A. P. Pitaevskii, ZhETF, 65:2(8) (1973), 590 | MR

[10] V. K. Melnikov, Inverse Problems, 6 (1990), 809 | DOI | MR | Zbl

[11] V. Buslaev, V. Fomin, Vestn. LGU. Ser. Matem. Mekh. Astron., 17:1 (1962), 56 | MR | Zbl

[12] Amy Cohen, Commun. Part. Diff. Equat., 7 (1982), 883 | DOI | MR | Zbl

[13] L. D. Faddeev, UMN, 14:4(88) (1959), 57 | MR

[14] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[15] A. B. Khasanov, DAN RUZ, 1995, no. 5–6, 8