A New Integrable Case for the Kirchhoff Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 31-37
Voir la notice de l'article provenant de la source Math-Net.Ru
A new integrable case is found for the Kirchhoff equation. The additional integral of motion is a fourth-degree polynomial, the principal metric is diagonal with the eigenvalues $a_1=a_2=1$ and $a_3=2$, and the other two metrics are nondiagonal.
@article{TMF_2001_129_1_a3,
author = {V. V. Sokolov},
title = {A {New} {Integrable} {Case} for the {Kirchhoff} {Equation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {31--37},
publisher = {mathdoc},
volume = {129},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a3/}
}
V. V. Sokolov. A New Integrable Case for the Kirchhoff Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a3/