A $q$-Analogue of the Euler Gamma Integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 20-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss $q$-analogues of the Euler reflection formula and the Euler gamma integral. The central role here is played by the Ramanujan $q$-extension of the Euler integral representation for the gamma function, which allows deriving the Mellin integral transformations for the $q$-polynomials of Stieltjes–Wigert, Rogers–Szegö, Laguerre, and Wall, for the alternative $q$-polynomials of Charlier, and for the little $q$-polynomials of Jacobi.
@article{TMF_2001_129_1_a2,
author = {N. M. Atakishiyev and M. K. Atakishiyeva},
title = {A $q${-Analogue} of the {Euler} {Gamma} {Integral}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {20--30},
publisher = {mathdoc},
volume = {129},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a2/}
}
N. M. Atakishiyev; M. K. Atakishiyeva. A $q$-Analogue of the Euler Gamma Integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a2/