A $q$-Analogue of the Euler Gamma Integral
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 20-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss $q$-analogues of the Euler reflection formula and the Euler gamma integral. The central role here is played by the Ramanujan $q$-extension of the Euler integral representation for the gamma function, which allows deriving the Mellin integral transformations for the $q$-polynomials of Stieltjes–Wigert, Rogers–Szegö, Laguerre, and Wall, for the alternative $q$-polynomials of Charlier, and for the little $q$-polynomials of Jacobi.
@article{TMF_2001_129_1_a2,
     author = {N. M. Atakishiyev and M. K. Atakishiyeva},
     title = {A $q${-Analogue} of the {Euler} {Gamma} {Integral}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {129},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a2/}
}
TY  - JOUR
AU  - N. M. Atakishiyev
AU  - M. K. Atakishiyeva
TI  - A $q$-Analogue of the Euler Gamma Integral
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 20
EP  - 30
VL  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a2/
LA  - ru
ID  - TMF_2001_129_1_a2
ER  - 
%0 Journal Article
%A N. M. Atakishiyev
%A M. K. Atakishiyeva
%T A $q$-Analogue of the Euler Gamma Integral
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 20-30
%V 129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a2/
%G ru
%F TMF_2001_129_1_a2
N. M. Atakishiyev; M. K. Atakishiyeva. A $q$-Analogue of the Euler Gamma Integral. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a2/