Geometric-Dynamic Approach to Billiard Systems: II. Geometric Features of Involutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 116-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following geometric features of billiard involutions are established and investigated: covariance, transformations related to reflections of billiard rays, types of symmetries, and the character of monotonicity and differentiability.
@article{TMF_2001_129_1_a10,
     author = {S. V. Naydenov and V. V. Yanovskii},
     title = {Geometric-Dynamic {Approach} to {Billiard} {Systems:} {II.~Geometric} {Features} of {Involutions}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {116--130},
     year = {2001},
     volume = {129},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a10/}
}
TY  - JOUR
AU  - S. V. Naydenov
AU  - V. V. Yanovskii
TI  - Geometric-Dynamic Approach to Billiard Systems: II. Geometric Features of Involutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 116
EP  - 130
VL  - 129
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a10/
LA  - ru
ID  - TMF_2001_129_1_a10
ER  - 
%0 Journal Article
%A S. V. Naydenov
%A V. V. Yanovskii
%T Geometric-Dynamic Approach to Billiard Systems: II. Geometric Features of Involutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 116-130
%V 129
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a10/
%G ru
%F TMF_2001_129_1_a10
S. V. Naydenov; V. V. Yanovskii. Geometric-Dynamic Approach to Billiard Systems: II. Geometric Features of Involutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 116-130. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a10/

[1] S. V. Naidenov, V. V. Yanovskii, “Geometro-dinamicheskii podkhod k billiardnym sistemam. I: Proektivnaya involyutsii billiarda. Pryamaya i obratnaya zadacha”, TMF, 127:1 (2001), 110 | DOI | MR | Zbl

[2] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR

[3] N. V. Efimov, Vysshaya geometriya, Fizmatgiz, M., 1961 | MR | Zbl

[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[5] A. Yu. Loskutov, A. B. Ryabov, L. G. Akinshin, ZhETF, 116:5 (1999), 1781

[6] V. F. Lazutkin, Vypuklyi billiard i sobstvennye funktsii operatora Laplasa, LGU, L., 1981 | MR

[7] I. P. Kornfeld, Ya. G. Sinai, S. I. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl