@article{TMF_2001_129_1_a10,
author = {S. V. Naydenov and V. V. Yanovskii},
title = {Geometric-Dynamic {Approach} to {Billiard} {Systems:} {II.~Geometric} {Features} of {Involutions}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {116--130},
year = {2001},
volume = {129},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a10/}
}
TY - JOUR AU - S. V. Naydenov AU - V. V. Yanovskii TI - Geometric-Dynamic Approach to Billiard Systems: II. Geometric Features of Involutions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 116 EP - 130 VL - 129 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a10/ LA - ru ID - TMF_2001_129_1_a10 ER -
S. V. Naydenov; V. V. Yanovskii. Geometric-Dynamic Approach to Billiard Systems: II. Geometric Features of Involutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 116-130. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a10/
[1] S. V. Naidenov, V. V. Yanovskii, “Geometro-dinamicheskii podkhod k billiardnym sistemam. I: Proektivnaya involyutsii billiarda. Pryamaya i obratnaya zadacha”, TMF, 127:1 (2001), 110 | DOI | MR | Zbl
[2] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR
[3] N. V. Efimov, Vysshaya geometriya, Fizmatgiz, M., 1961 | MR | Zbl
[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[5] A. Yu. Loskutov, A. B. Ryabov, L. G. Akinshin, ZhETF, 116:5 (1999), 1781
[6] V. F. Lazutkin, Vypuklyi billiard i sobstvennye funktsii operatora Laplasa, LGU, L., 1981 | MR
[7] I. P. Kornfeld, Ya. G. Sinai, S. I. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl