A Classical Solution of the Pentagon Equation Related to the Group $SL(2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 14-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new solution of the pentagon equation related to the flat geometry is obtained; it is invariant under the action of the group $SL(2)$.
@article{TMF_2001_129_1_a1,
     author = {I. G. Korepanov and E. V. Martyushev},
     title = {A {Classical} {Solution} of the {Pentagon} {Equation} {Related} to the {Group} $SL(2)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {14--19},
     year = {2001},
     volume = {129},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a1/}
}
TY  - JOUR
AU  - I. G. Korepanov
AU  - E. V. Martyushev
TI  - A Classical Solution of the Pentagon Equation Related to the Group $SL(2)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 14
EP  - 19
VL  - 129
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a1/
LA  - ru
ID  - TMF_2001_129_1_a1
ER  - 
%0 Journal Article
%A I. G. Korepanov
%A E. V. Martyushev
%T A Classical Solution of the Pentagon Equation Related to the Group $SL(2)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 14-19
%V 129
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a1/
%G ru
%F TMF_2001_129_1_a1
I. G. Korepanov; E. V. Martyushev. A Classical Solution of the Pentagon Equation Related to the Group $SL(2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 14-19. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a1/

[1] I. G. Korepanov, “Invariants of PL manifolds from metrized simplicial complexes. Three-dimensional case.”, J. Nonlin. Math. Phys., 2001 (to appear) | MR

[2] G. Ponzano, T. Regge, “Semiclassical limit of Racah coefficients”, Spectroscopic and Group Theoretical Methods in Physics, ed. F. Bloch, North-Holland, Amsterdam, 1968, 1–58

[3] J. D. Roberts, Geom. Topol. (electronic), 3 (1999), 21–66 | DOI | MR | Zbl

[4] I. G. Korepanov, A formula with hypervolumes of six 4-simplices and two discrete curvatures, E-print nlin.SI/0003024

[5] I. G. Korepanov, TMF, 124:1 (2000), 169–176 | DOI | MR | Zbl

[6] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, 2-e izd., Nauka, M., 1998 | MR