A Classical Solution of the Pentagon Equation Related to the Group $SL(2)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 14-19
Cet article a éte moissonné depuis la source Math-Net.Ru
A new solution of the pentagon equation related to the flat geometry is obtained; it is invariant under the action of the group $SL(2)$.
@article{TMF_2001_129_1_a1,
author = {I. G. Korepanov and E. V. Martyushev},
title = {A {Classical} {Solution} of the {Pentagon} {Equation} {Related} to the {Group} $SL(2)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {14--19},
year = {2001},
volume = {129},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a1/}
}
TY - JOUR AU - I. G. Korepanov AU - E. V. Martyushev TI - A Classical Solution of the Pentagon Equation Related to the Group $SL(2)$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 14 EP - 19 VL - 129 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a1/ LA - ru ID - TMF_2001_129_1_a1 ER -
I. G. Korepanov; E. V. Martyushev. A Classical Solution of the Pentagon Equation Related to the Group $SL(2)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 14-19. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a1/
[1] I. G. Korepanov, “Invariants of PL manifolds from metrized simplicial complexes. Three-dimensional case.”, J. Nonlin. Math. Phys., 2001 (to appear) | MR
[2] G. Ponzano, T. Regge, “Semiclassical limit of Racah coefficients”, Spectroscopic and Group Theoretical Methods in Physics, ed. F. Bloch, North-Holland, Amsterdam, 1968, 1–58
[3] J. D. Roberts, Geom. Topol. (electronic), 3 (1999), 21–66 | DOI | MR | Zbl
[4] I. G. Korepanov, A formula with hypervolumes of six 4-simplices and two discrete curvatures, E-print nlin.SI/0003024
[5] I. G. Korepanov, TMF, 124:1 (2000), 169–176 | DOI | MR | Zbl
[6] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, 2-e izd., Nauka, M., 1998 | MR