Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider equations on Lie groups and classical and quantum Hamiltonian systems on coadjoint representation orbits. We show that the transition to canonical coordinates on orbits of the coadjoint representation allows constructing semiclassical solutions and the corresponding spectra of quantum equations such that all the symmetries of the original problem are preserved. Our method is used to find the semiclassical spectrum of the asymmetric quantum top.
@article{TMF_2001_129_1_a0,
     author = {S. P. Baranovskii and V. V. Mikheyev and I. V. Shirokov},
     title = {Quantum {Hamiltonian} {Systems} on {K-Orbits:} {Semiclassical} {Spectrum} of the {Asymmetric} {Top}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--13},
     year = {2001},
     volume = {129},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a0/}
}
TY  - JOUR
AU  - S. P. Baranovskii
AU  - V. V. Mikheyev
AU  - I. V. Shirokov
TI  - Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 3
EP  - 13
VL  - 129
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a0/
LA  - ru
ID  - TMF_2001_129_1_a0
ER  - 
%0 Journal Article
%A S. P. Baranovskii
%A V. V. Mikheyev
%A I. V. Shirokov
%T Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 3-13
%V 129
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a0/
%G ru
%F TMF_2001_129_1_a0
S. P. Baranovskii; V. V. Mikheyev; I. V. Shirokov. Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a0/

[1] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl

[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR | Zbl

[3] A. T. Fomenko, Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[4] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[5] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR | Zbl

[6] I. V. Shirokov, TMF, 123:3 (2000), 407–423 | DOI | MR | Zbl

[7] Zh. Diksme, Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[8] I. V. Shirokov, K-orbity, garmonicheskii analiz na odnorodnykh prostranstvakh i integrirovanie differentsialnykh uravnenii, Preprint, OmGU, Omsk, 1998

[9] V. N. Shapovalov, Differentsialnye uravneniya, 16:10 (1980), 1864–1874 | MR | Zbl

[10] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR

[11] P. A. Braun, A. A. Kiselev, Vvedenie v teoriyu molekulyarnykh spektrov, LGU, L., 1983

[12] I. Aizenberg, V. Grainer, Modeli yader. Kollektivnye i odnochastichnye yavleniya, Atomizdat, M., 1975

[13] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii (Formuly, grafiki, tablitsy), Nauka, M., 1964 | MR