Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top
Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider equations on Lie groups and classical and quantum Hamiltonian systems on coadjoint representation orbits. We show that the transition to canonical coordinates on orbits of the coadjoint representation allows constructing semiclassical solutions and the corresponding spectra of quantum equations such that all the symmetries of the original problem are preserved. Our method is used to find the semiclassical spectrum of the asymmetric quantum top.
@article{TMF_2001_129_1_a0,
     author = {S. P. Baranovskii and V. V. Mikheyev and I. V. Shirokov},
     title = {Quantum {Hamiltonian} {Systems} on {K-Orbits:} {Semiclassical} {Spectrum} of the {Asymmetric} {Top}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {129},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a0/}
}
TY  - JOUR
AU  - S. P. Baranovskii
AU  - V. V. Mikheyev
AU  - I. V. Shirokov
TI  - Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 3
EP  - 13
VL  - 129
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a0/
LA  - ru
ID  - TMF_2001_129_1_a0
ER  - 
%0 Journal Article
%A S. P. Baranovskii
%A V. V. Mikheyev
%A I. V. Shirokov
%T Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 3-13
%V 129
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a0/
%G ru
%F TMF_2001_129_1_a0
S. P. Baranovskii; V. V. Mikheyev; I. V. Shirokov. Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top. Teoretičeskaâ i matematičeskaâ fizika, Tome 129 (2001) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TMF_2001_129_1_a0/