On the Mechanism for Nonlinear Representations of the Lorentz Group Arising in Quantum Field Theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 403-408 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A “mechanism” is identified that leads to the “correct” law for the relativistic Wigner function transformation with respect to the Lorentz group as long as the corresponding relativistic wave functions have special transformation properties.
@article{TMF_2001_128_3_a5,
     author = {O. I. Zavialov},
     title = {On the {Mechanism} for {Nonlinear} {Representations} of the {Lorentz} {Group} {Arising} in {Quantum} {Field} {Theory}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--408},
     year = {2001},
     volume = {128},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a5/}
}
TY  - JOUR
AU  - O. I. Zavialov
TI  - On the Mechanism for Nonlinear Representations of the Lorentz Group Arising in Quantum Field Theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 403
EP  - 408
VL  - 128
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a5/
LA  - ru
ID  - TMF_2001_128_3_a5
ER  - 
%0 Journal Article
%A O. I. Zavialov
%T On the Mechanism for Nonlinear Representations of the Lorentz Group Arising in Quantum Field Theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 403-408
%V 128
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a5/
%G ru
%F TMF_2001_128_3_a5
O. I. Zavialov. On the Mechanism for Nonlinear Representations of the Lorentz Group Arising in Quantum Field Theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 403-408. http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a5/

[1] O. I. Zavyalov, TMF, 127:1 (2001), 75 | DOI | MR | Zbl

[2] O. I. Zavyalov, Trudy MIAN im. V. A. Steklova, 228, 2000, 136 | MR | Zbl

[3] E. Wigner, Phys. Rev., 40 (1932), 749 | DOI | Zbl

[4] O. I. Zavyalov, A. M. Malokostov, TMF, 119 (1999), 67 | DOI | Zbl