Amplitudes in Nonlocal Theories at High Energies
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 395-402
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain the upper bound for the total scattering cross section $\sigma_{\text{tot}}(s)\leq Cs^{\rho-1}\ln^2s$ in the nonlocal quantum field theory of a scalar field with a bounded amplitude growth $\sim e^{B\|p^2\|^\rho}$ in the complex momentum $p^2$-space.
@article{TMF_2001_128_3_a4,
author = {G. V. Efimov},
title = {Amplitudes in {Nonlocal} {Theories} at {High} {Energies}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {395--402},
year = {2001},
volume = {128},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a4/}
}
G. V. Efimov. Amplitudes in Nonlocal Theories at High Energies. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 395-402. http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a4/
[1] R. Iden, Soudareniya elementarnykh chastits pri vysokikh energiyakh, Nauka, M., 1970
[2] P. D. B. Collins and E. J. Squires, Regge Poles in Particle Physics, Springer, Berlin, 1968
[3] V. Ya. Fainberg, M. Z. Iofa, ZhETF, 56 (1969), 1644 | Zbl
[4] M. A. Solovev, Tr. FIAN, 209, 1993, 121
[5] G. V. Efimov, M. A. Ivanov, Quark Confinement Model of Hadrons, IOP, Bristol, 1993
[6] G. V. Efimov and S. N. Nedelko, Phys. Rev. D, 51 (1995), 176 | DOI
[7] G. V. Efimov and G. Ganbold, Meson Spectrum and Analytic Confinement, E-print hep-ph/0103101
[8] G. V. Efimov, Nelokalnye vzaimodeistviya kvantovannykh polei, Nauka, M., 1977 | MR
[9] V. Ya. Fainberg and M. Z. Iofa, Nuovo Cimento A, 5 (1971), 275 | DOI