General Form of the $*$-Commutator on the Grassmann Algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 515-539
Cet article a éte moissonné depuis la source Math-Net.Ru
The general form of the $*$-commutator on the Grassmann algebra treated as a deformation of the conventional Poisson bracket is investigated. It is shown that in addition to the Moyal $*$-commutator, there exist other deformations of the Poisson bracket on the Grassman algebra (one additional deformation for even and odd $n$, where $n$ is the number of the Grassmann algebra generators) that are not reducible to the Moyal $*$-commutator by a similarity transformation.
@article{TMF_2001_128_3_a13,
author = {I. V. Tyutin},
title = {General {Form} of the $*${-Commutator} on the {Grassmann} {Algebra}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {515--539},
year = {2001},
volume = {128},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a13/}
}
I. V. Tyutin. General Form of the $*$-Commutator on the Grassmann Algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 515-539. http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a13/
[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowich, D. Sternheimer, Ann. Phys., 111 (1978), 61 | DOI | MR | Zbl
[2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowich, D. Sternheimer, Ann. Phys., 111 (1978), 111 | DOI | MR
[3] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl
[4] B. Fedosov, Deformation quantization and Index Theory, Akademie, Berlin, 1996 | MR
[5] M. Kontsevich, Deformation quantization of Poisson manifolds, I, E-print q-alg/9709040 | MR
[6] J. E. Moyal, Proc. Cambridge Philos. Soc., 45 (1949), 99 | DOI | MR | Zbl