Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 492-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the theory of Lorentz-covariant distributions to broader classes of functionals including ultradistributions, hyperfunctions, and analytic functionals with a tempered growth. We prove that Lorentz-covariant functionals with essential singularities can be decomposed into polynomial covariants and establish the possibility of the invariant decomposition of their carrier cones. We describe the properties of odd highly singular generalized functions. These results are used to investigate the vacuum expectation values of nonlocal quantum fields with an arbitrary high-energy behavior and to extend the spin-statistics theorem to nonlocal field theory.
@article{TMF_2001_128_3_a12,
     author = {M. A. Soloviev},
     title = {Lorentz-Covariant {Ultradistributions,} {Hyperfunctions,} and {Analytic} {Functionals}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {492--514},
     year = {2001},
     volume = {128},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a12/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 492
EP  - 514
VL  - 128
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a12/
LA  - ru
ID  - TMF_2001_128_3_a12
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 492-514
%V 128
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a12/
%G ru
%F TMF_2001_128_3_a12
M. A. Soloviev. Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 492-514. http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a12/

[1] R. Striter, A. Vaitman, RST, spin i statistika i vse takoe, Nauka, M., 1966

[2] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[3] N. N. Meiman, ZhETF, 47 (1964), 1966 | MR

[4] A. Jaffe, Phys. Rev., 158 (1967), 1454 | DOI

[5] M. Z. Iofa, V. Ya. Fainberg, TMF, 1 (1967), 187 | MR

[6] M. Z. Iofa, V. Ya. Fainberg, ZhETF, 56 (1969), 1644 | Zbl

[7] V. Ya. Fainberg, A. V. Marshakov, Phys. Lett. B, 211 (1988), 82 | DOI | MR

[8] M. Z. Iofa, V. Ya. Fainberg, Nuovo Cim., 5A (1971), 273

[9] V. Ya. Fainberg, “O kvantovykh teoriyakh s nepolinomialnym rostom matrichnykh elementov”, Problemy teoreticheskoi fiziki, Nauka, M., 1972, 119 | MR

[10] V. Ya. Fainberg, M. A. Soloviev, Ann. Phys., 113 (1978), 421 | DOI | MR | Zbl

[11] S. B. Giddings, Phys. Rev. D, 61 (2000), 106008 | DOI | MR

[12] G. V. Efimov, Nelokalnye vzaimodeistviya kvantovannykh polei, Nauka, M., 1977 | MR

[13] G. V. Efimov, Problemy kvantovoi teorii nelokalnykh vzaimodeistvii, Nauka, M., 1985 | MR

[14] J. W. Moffat, Quantum field theory solution to the gauge hierarchy and cosmological constant problems, E-print hep-ph/0003171

[15] M. A. Solovev, TMF, 7 (1971), 183 | Zbl

[16] S. Nagamachi, N. Mugibayashi, Commun. Math. Phys., 46 (1976), 119 | DOI | MR | Zbl

[17] S. Nagamachi, N. Mugibayashi, Commun. Math. Phys., 49 (1976), 257 | DOI | MR | Zbl

[18] M. A. Solovev, TMF, 15 (1973), 3 | Zbl

[19] U. Moschella, F. Strocchi, Lett. Math. Phys., 24 (1992), 103 | DOI | MR | Zbl

[20] M. A. Soloviev, Lett. Math. Phys., 41 (1997), 265 | DOI | MR | Zbl

[21] A. G. Smirnov, M. A. Solovev, TMF, 123 (2000), 355 | DOI | Zbl

[22] M. A. Solovev, Trudy FIAN, 209, 1993, 121

[23] A. I. Oksak, I. T. Todorov, Commun. Math. Phys., 14 (1969), 271 | DOI | MR | Zbl

[24] M. A. Solovev, TMF, 121 (1999), 139 | DOI | Zbl

[25] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, T. 2, Fizmat, M., 1958 | MR | Zbl

[26] V. P. Palamodov, UMN, 26 (1971), 3 | MR | Zbl

[27] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[28] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, T. 4, Fizmat, M., 1961 | MR

[29] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986 | MR

[30] A. Lambert, Ann. Inst. Fourier, 29 (1979), 57 | DOI | MR | Zbl

[31] P. Shapira, Teoriya giperfunktsii, Mir, M., 1972 | MR | Zbl

[32] T. Kawai, J. Fac. Sci. Univ. Tokyo. Sect. 1A. Math., 17 (1970), 467 | MR | Zbl

[33] D. A. Raikov, Sib. matem. zh., 7 (1966), 353 | MR | Zbl

[34] A. Grothendieck, Mem. Amer. Math. Soc., 16, 1955 | MR

[35] V. S. Retakh, DAN, 194 (1970), 1277 | Zbl

[36] V. Ya. Fainberg, M. A. Solovev, TMF, 93 (1992), 514 | MR | Zbl

[37] M. A. Soloviev, Lett. Math. Phys., 33 (1995), 49 | DOI | MR | Zbl

[38] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[39] A. S. Wightman, Adv. Math. Suppl. Stud., 7B (1981), 769 | MR | Zbl

[40] M. A. Soloviev, Commun. Math. Phys., 184 (1997), 579 | DOI | MR | Zbl

[41] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[42] G. E. Shilov, Matematicheskii analiz, Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR

[43] N. Burbaki, Topologicheskie vektornye prostranstva, IL, M., 1959