Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 492-514

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the theory of Lorentz-covariant distributions to broader classes of functionals including ultradistributions, hyperfunctions, and analytic functionals with a tempered growth. We prove that Lorentz-covariant functionals with essential singularities can be decomposed into polynomial covariants and establish the possibility of the invariant decomposition of their carrier cones. We describe the properties of odd highly singular generalized functions. These results are used to investigate the vacuum expectation values of nonlocal quantum fields with an arbitrary high-energy behavior and to extend the spin-statistics theorem to nonlocal field theory.
@article{TMF_2001_128_3_a12,
     author = {M. A. Soloviev},
     title = {Lorentz-Covariant {Ultradistributions,} {Hyperfunctions,} and {Analytic} {Functionals}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {492--514},
     publisher = {mathdoc},
     volume = {128},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a12/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 492
EP  - 514
VL  - 128
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a12/
LA  - ru
ID  - TMF_2001_128_3_a12
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 492-514
%V 128
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a12/
%G ru
%F TMF_2001_128_3_a12
M. A. Soloviev. Lorentz-Covariant Ultradistributions, Hyperfunctions, and Analytic Functionals. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 492-514. http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a12/