Twists and Singular Vectors in $\widehat{s\ell}(2|1)$ Representations
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 474-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose new formulas for singular vectors in Verma modules over the affine Lie superalgebra $\widehat{s\ell}(2|1)$. We analyze the coexistence of singular vectors of different types and identify the twisted modules arising as submodules and quotient modules of $\widehat{s\ell}(2|1)$ Verma modules. We show that with the twists (spectral flow transformations) properly taken into account, a resolution of irreducible representations can be constructed consisting of only the $\mathscr N_{h,k;\theta}^\pm$ modules.
@article{TMF_2001_128_3_a11,
     author = {A. M. Semikhatov and A. Taormina},
     title = {Twists and {Singular} {Vectors} in $\widehat{s\ell}(2|1)$ {Representations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {474--491},
     year = {2001},
     volume = {128},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a11/}
}
TY  - JOUR
AU  - A. M. Semikhatov
AU  - A. Taormina
TI  - Twists and Singular Vectors in $\widehat{s\ell}(2|1)$ Representations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 474
EP  - 491
VL  - 128
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a11/
LA  - ru
ID  - TMF_2001_128_3_a11
ER  - 
%0 Journal Article
%A A. M. Semikhatov
%A A. Taormina
%T Twists and Singular Vectors in $\widehat{s\ell}(2|1)$ Representations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 474-491
%V 128
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a11/
%G ru
%F TMF_2001_128_3_a11
A. M. Semikhatov; A. Taormina. Twists and Singular Vectors in $\widehat{s\ell}(2|1)$ Representations. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 3, pp. 474-491. http://geodesic.mathdoc.fr/item/TMF_2001_128_3_a11/

[1] D. Bernard, (Perturbed) Conformal Field Theory Applied To 2D Disordered Systems: An Introduction, E-print hep-th/9509137

[2] Z. S. Bassi and A. LeClair, Nucl. Phys. B, 578 (2000), 577 ; E-print hep-th/9911105 | DOI | MR | Zbl

[3] D. Bernard and A. LeClair, Quasi-spin-charge separation and the spin quantum Hall effect, E-print cond-mat/0003075

[4] M. Bershadsky, and H. Ooguri, Phys. Lett. B, 229 (1989), 374 | DOI | MR

[5] M. Bershadsky, W. Lerche, D. Nemeschansky, and N. P. Warner, Nucl. Phys. B, 401 (1993), 304 | DOI | MR | Zbl

[6] K. Ito and H. Kanno, Mod. Phys. Lett. A, 9 (1994), 1377 | DOI | MR | Zbl

[7] A. M. Semikhatov, Nucl. Phys. B, 478 (1996), 209 | DOI | MR | Zbl

[8] P. Bowcock, B. L. Feigin, A. M. Semikhatov, and A. Taormina, Commun. Math. Phys., 214 (2000), 495 ; E-print hep-th/9907171 | DOI | MR | Zbl

[9] P. Bowcock, A. Taormina, Commun. Math. Phys., 185 (1997), 467 ; P. Bowcock, M. R. Hayes, and A. Taormina, Nucl. Phys. B, 510 (1998), 739 | DOI | MR | Zbl | DOI | MR | Zbl

[10] A. M. Semikhatov, TMF, 112 (1997), 195 ; E-print hep-th/9610084 | DOI | MR | Zbl

[11] B. L. Feigin, A. M. Semikhatov, V. A. Sirota, and I. Yu. Tipunin, Nucl. Phys. B, 536 (1999), 617 | DOI | MR | Zbl

[12] F. G. Malikov, B. L. Feigin, D. B. Fuks, Funkts. analiz i ego prilozh., 20:2 (1986), 25 | MR | Zbl