@article{TMF_2001_128_2_a4,
author = {A. V. Tsiganov},
title = {Construction of {Separation} {Variables} for {Finite-Dimensional} {Integrable} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--225},
year = {2001},
volume = {128},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/}
}
A. V. Tsiganov. Construction of Separation Variables for Finite-Dimensional Integrable Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 205-225. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/
[1] A. M. Vinogradov, B. A. Kupershmidt, UMN, 32 (1977), 175 | Zbl
[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[3] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Teoretiko-gruppovye metody v teorii integriruemykh sistem”, Dinamicheskie sistemy–VII, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, ed. R. V. Gamkrelidze, VINITI, M., 1987, 119 | MR
[4] I. M. Gel'fand, I. Zakharevich, “On the local geometry of a bi-Hamiltonian structure”, The Gelfand Mathematical Seminars 1990–1992, eds. L. Corwin et al., Birkauser, Boston, 1993, 51 | DOI | MR | Zbl
[5] E. K. Sklyanin, Progr. Theor. Phys. Suppl., 118 (1995), 35 | DOI | MR | Zbl
[6] I. M. Gelfand, I. Zakharevich, Webs, Lenard schemes and the local geometry of bihamiltonian Toda and Lax structures, ; G. Falqui, F. Magri, M. Pedroni, Bihamiltonian geometry and separation of variables for Toda lattices, Ref. SI{§S}A 139/1999/FM, SI{§S}A, Trieste, 1999 E-print math.DG/9903080 | MR
[7] M. Adler, P. van Moerbeke, Algebraic Completely Integrable Systems: a Systematic Approach, Acad. Press, New York, 1993
[8] P. Vanhaecke, Integrable Systems in the Realm of Algebraic Geometry, Lect. Notes Math., 1638, Springer, New York, 1996 | DOI | MR | Zbl
[9] M. Blaszak, J. Nonlinear Math. Phys., 7 (2000), 213 | DOI | MR | Zbl
[10] P. Stäckel, Uber die Integration der Hamilton–Jacobischen Differential Gleichung Mittelst Separation der Variabel, Habilitationsschrift, Halle, 1891
[11] A. P. Fordy, Physica D, 52 (1991), 204 | DOI | MR | Zbl
[12] E. G. Kalnins, Separation of Variables for Riemann Spaces of Constant Curvature, Wiley, New York, 1986 | MR | Zbl
[13] B. Kostant, Adv. Math., 34 (1979), 195 | DOI | MR | Zbl
[14] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl
[15] V. B. Kuznetsov, J. Phys. A, 30 (1997), 2127 | DOI | MR | Zbl
[16] E. K. Sklyanin, Bäcklund transformations and Baxter's $Q$-operator, E-print nlin.si/0009009 | MR
[17] A. V. Tsiganov, J. Math. Phys., 38 (1997), 196 | DOI | MR | Zbl
[18] E. K. Sklyanin, “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory, Proc. Seminar Series (Observatoire de Mendon, Mendon, and at the Univ. Pierre and Marie Curie, Paris, Oct. 1983 – Oct. 1984), Lect. Notes Phys., 226, ed. N. Sanchez, Springer, Berlin, 1985, 196 | DOI | MR
[19] Y. Zeng, J. Phys. A, 33 (2000), 621 | DOI | MR | Zbl
[20] A. V. Tsyganov, TMF, 115 (1998), 3 | DOI | MR | Zbl
[21] A. V. Tsyganov, TMF, 120 (1999), 27 | DOI | MR | Zbl
[22] C. Bechlivanidis, P. van Moerbeke, Commun. Math. Phys., 110 (1987), 317 | DOI | MR | Zbl
[23] E. K. Sklyanin, J. Sov. Math., 31 (1985), 3417 | DOI | Zbl
[24] A. I. Bobenko, V. Kuznetsov, J. Phys. A, 21 (1988), 1999 | DOI | MR | Zbl
[25] G. Falki, F. Magri, G. Tondo, TMF, 122 (2000), 219
[26] A. P. Veselov, UMN, 46:5 (1991), 3 | MR