Construction of Separation Variables for Finite-Dimensional Integrable Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 205-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of integrable systems such that solutions of the corresponding Hamilton–Jacobi equation depend on $n+m$ arbitrary parameters and are represented as products of flat curves. The first n parameters are identified with the values of the integrals of motion. The remaining parameters enter the definition of the integrals of motion as arbitrary constants (charges) and can be used to find separation variables. We show that on the coadjoint orbits of Lie groups, the Casimir operators not only generate a family of integrals but also allow constructing separation variables.
@article{TMF_2001_128_2_a4,
     author = {A. V. Tsiganov},
     title = {Construction of {Separation} {Variables} for {Finite-Dimensional} {Integrable} {Systems}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--225},
     year = {2001},
     volume = {128},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Construction of Separation Variables for Finite-Dimensional Integrable Systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 205
EP  - 225
VL  - 128
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/
LA  - ru
ID  - TMF_2001_128_2_a4
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Construction of Separation Variables for Finite-Dimensional Integrable Systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 205-225
%V 128
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/
%G ru
%F TMF_2001_128_2_a4
A. V. Tsiganov. Construction of Separation Variables for Finite-Dimensional Integrable Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 205-225. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/

[1] A. M. Vinogradov, B. A. Kupershmidt, UMN, 32 (1977), 175 | Zbl

[2] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[3] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Teoretiko-gruppovye metody v teorii integriruemykh sistem”, Dinamicheskie sistemy–VII, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, ed. R. V. Gamkrelidze, VINITI, M., 1987, 119 | MR

[4] I. M. Gel'fand, I. Zakharevich, “On the local geometry of a bi-Hamiltonian structure”, The Gelfand Mathematical Seminars 1990–1992, eds. L. Corwin et al., Birkauser, Boston, 1993, 51 | DOI | MR | Zbl

[5] E. K. Sklyanin, Progr. Theor. Phys. Suppl., 118 (1995), 35 | DOI | MR | Zbl

[6] I. M. Gelfand, I. Zakharevich, Webs, Lenard schemes and the local geometry of bihamiltonian Toda and Lax structures, ; G. Falqui, F. Magri, M. Pedroni, Bihamiltonian geometry and separation of variables for Toda lattices, Ref. SI{§S}A 139/1999/FM, SI{§S}A, Trieste, 1999 E-print math.DG/9903080 | MR

[7] M. Adler, P. van Moerbeke, Algebraic Completely Integrable Systems: a Systematic Approach, Acad. Press, New York, 1993

[8] P. Vanhaecke, Integrable Systems in the Realm of Algebraic Geometry, Lect. Notes Math., 1638, Springer, New York, 1996 | DOI | MR | Zbl

[9] M. Blaszak, J. Nonlinear Math. Phys., 7 (2000), 213 | DOI | MR | Zbl

[10] P. Stäckel, Uber die Integration der Hamilton–Jacobischen Differential Gleichung Mittelst Separation der Variabel, Habilitationsschrift, Halle, 1891

[11] A. P. Fordy, Physica D, 52 (1991), 204 | DOI | MR | Zbl

[12] E. G. Kalnins, Separation of Variables for Riemann Spaces of Constant Curvature, Wiley, New York, 1986 | MR | Zbl

[13] B. Kostant, Adv. Math., 34 (1979), 195 | DOI | MR | Zbl

[14] V. I. Inozemtsev, Commun. Math. Phys., 121 (1989), 629 | DOI | MR | Zbl

[15] V. B. Kuznetsov, J. Phys. A, 30 (1997), 2127 | DOI | MR | Zbl

[16] E. K. Sklyanin, Bäcklund transformations and Baxter's $Q$-operator, E-print nlin.si/0009009 | MR

[17] A. V. Tsiganov, J. Math. Phys., 38 (1997), 196 | DOI | MR | Zbl

[18] E. K. Sklyanin, “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory, Proc. Seminar Series (Observatoire de Mendon, Mendon, and at the Univ. Pierre and Marie Curie, Paris, Oct. 1983 – Oct. 1984), Lect. Notes Phys., 226, ed. N. Sanchez, Springer, Berlin, 1985, 196 | DOI | MR

[19] Y. Zeng, J. Phys. A, 33 (2000), 621 | DOI | MR | Zbl

[20] A. V. Tsyganov, TMF, 115 (1998), 3 | DOI | MR | Zbl

[21] A. V. Tsyganov, TMF, 120 (1999), 27 | DOI | MR | Zbl

[22] C. Bechlivanidis, P. van Moerbeke, Commun. Math. Phys., 110 (1987), 317 | DOI | MR | Zbl

[23] E. K. Sklyanin, J. Sov. Math., 31 (1985), 3417 | DOI | Zbl

[24] A. I. Bobenko, V. Kuznetsov, J. Phys. A, 21 (1988), 1999 | DOI | MR | Zbl

[25] G. Falki, F. Magri, G. Tondo, TMF, 122 (2000), 219

[26] A. P. Veselov, UMN, 46:5 (1991), 3 | MR