Construction of Separation Variables for Finite-Dimensional Integrable Systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 205-225
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of integrable systems such that solutions of the corresponding Hamilton–Jacobi equation depend on $n+m$ arbitrary parameters and are represented as products of flat curves. The first n parameters are identified with the values of the integrals of motion. The remaining parameters enter the definition of the integrals of motion as arbitrary constants (charges) and can be used to find separation variables. We show that on the coadjoint orbits of Lie groups, the Casimir operators not only generate a family of integrals but also allow constructing separation variables.
@article{TMF_2001_128_2_a4,
author = {A. V. Tsiganov},
title = {Construction of {Separation} {Variables} for {Finite-Dimensional} {Integrable} {Systems}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--225},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/}
}
TY - JOUR AU - A. V. Tsiganov TI - Construction of Separation Variables for Finite-Dimensional Integrable Systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 205 EP - 225 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/ LA - ru ID - TMF_2001_128_2_a4 ER -
A. V. Tsiganov. Construction of Separation Variables for Finite-Dimensional Integrable Systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 205-225. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a4/