Asymptotic expansions for partial solutions of the sixth Painlev\'e equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 193-204
Voir la notice de l'article provenant de la source Math-Net.Ru
A formalism for an averaging method for the Painlevé equations, in particular, the sixth equation, is developed. The problem is to describe the asymptotic behavior of the sixth Painlevé transcendental in the case where the module of the independent variable tends to infinity. The corresponding expansions contain an elliptic function (ansatz) in the principal term. The parameters of this function depend on the variable because of the modulation equation. The elliptic ansatz and the modulation equation for the sixth Painlevé equation are obtained in their explicit form. A partial solution of the modulation equation leading to a previously unknown asymptotic expansion for the partial solution of the sixth Painlevé equation is obtained.
@article{TMF_2001_128_2_a3,
author = {V. L. Vereshchagin},
title = {Asymptotic expansions for partial solutions of the sixth {Painlev\'e} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {193--204},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a3/}
}
TY - JOUR AU - V. L. Vereshchagin TI - Asymptotic expansions for partial solutions of the sixth Painlev\'e equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 193 EP - 204 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a3/ LA - ru ID - TMF_2001_128_2_a3 ER -
V. L. Vereshchagin. Asymptotic expansions for partial solutions of the sixth Painlev\'e equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a3/