Stochastic Fractals with Markovian Refinements
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 178-192
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the random point fields with Markovian refinements we previously introduced. For this class of disordered structures possessing scaling and spatial homogeneity, we give the complete proof of the self-averageability theorem for the fractal dimension.
@article{TMF_2001_128_2_a2,
author = {Yu. P. Virchenko and O. L. Shpilinskaya},
title = {Stochastic {Fractals} with {Markovian} {Refinements}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {178--192},
year = {2001},
volume = {128},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a2/}
}
Yu. P. Virchenko; O. L. Shpilinskaya. Stochastic Fractals with Markovian Refinements. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 178-192. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a2/
[1] Yu. P. Virchenko, O. L. Shpilinskaya, TMF, 124:3 (2000), 490–505 | DOI | MR | Zbl
[2] P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, New York, 1994 | MR | Zbl
[3] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[4] B. V. Gnedenko, Kurs teorii veroyatnostei, Nauka, M., 1969 | MR
[5] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR