Absence of Diffusion Through the Fractal Boundary of Two Media
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 309-320
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider ideal gas diffusion through a fractal boundary between two homogeneous media. This boundary is modeled by a spatially self-similar system of folds of the interface surface between the media. This surface can have a finite volume, which is then identified with the physical volume of the boundary layer. We show that the effective diffusion coefficient of ideal molecules vanishes in this layer.
@article{TMF_2001_128_2_a10,
author = {G. B. Andreev and V. V. Maksimenko},
title = {Absence of {Diffusion} {Through} the {Fractal} {Boundary} of {Two} {Media}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {309--320},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a10/}
}
TY - JOUR AU - G. B. Andreev AU - V. V. Maksimenko TI - Absence of Diffusion Through the Fractal Boundary of Two Media JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 309 EP - 320 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a10/ LA - ru ID - TMF_2001_128_2_a10 ER -
G. B. Andreev; V. V. Maksimenko. Absence of Diffusion Through the Fractal Boundary of Two Media. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 309-320. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a10/