Absence of Diffusion Through the Fractal Boundary of Two Media
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 309-320
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider ideal gas diffusion through a fractal boundary between two homogeneous media. This boundary is modeled by a spatially self-similar system of folds of the interface surface between the media. This surface can have a finite volume, which is then identified with the physical volume of the boundary layer. We show that the effective diffusion coefficient of ideal molecules vanishes in this layer.
@article{TMF_2001_128_2_a10,
author = {G. B. Andreev and V. V. Maksimenko},
title = {Absence of {Diffusion} {Through} the {Fractal} {Boundary} of {Two} {Media}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {309--320},
year = {2001},
volume = {128},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a10/}
}
G. B. Andreev; V. V. Maksimenko. Absence of Diffusion Through the Fractal Boundary of Two Media. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 309-320. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a10/
[1] A. Lagendijk, B. A. van Tiggelen, Physics Reports, 270 (1996), 143 | DOI
[2] Ping Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, Academic, San Diego, 1995
[3] V. V. Maksimenko, A. A. Lushnikov, Pisma v ZhETF, 57 (1993), 204
[4] E. Feder, Fraktaly, Mir, M., 1991 | MR
[5] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Nauka, M., 1962 | MR
[6] Dzh. Zaiman, Modeli besporyadka, Mir, M., 1982
[7] G. Sekei, Paradoksy v teorii veroyatnostei i matematicheskoi statistike, Mir, M., 1990 | MR
[8] V. V. Maksimenko, V. A. Krikunov, A. A. Lushnikov, ZhETF, 102 (1992), 1571