Geometric Models of the Statistical Theory of Fragmentation
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 161-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an approach to describing a medium fragmentation process based on studying the stochastic geometry of the medium states. This approach allows accounting for the interrelation of the produced fragments relative to their positions and, in particular, allows taking the size of the fragmenting object into account. We use this approach to analyze a one-dimensional model – a stochastic process with discrete time and a phase space consisting of partitions into fragments of the real axis. We derive the driving equation for the partition function with respect to sizes and prove the existence of a limit distribution.
@article{TMF_2001_128_2_a1,
     author = {Yu. P. Virchenko and O. I. Sheremet},
     title = {Geometric {Models} of the {Statistical} {Theory} of {Fragmentation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {161--177},
     year = {2001},
     volume = {128},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a1/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - O. I. Sheremet
TI  - Geometric Models of the Statistical Theory of Fragmentation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 161
EP  - 177
VL  - 128
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a1/
LA  - ru
ID  - TMF_2001_128_2_a1
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A O. I. Sheremet
%T Geometric Models of the Statistical Theory of Fragmentation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 161-177
%V 128
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a1/
%G ru
%F TMF_2001_128_2_a1
Yu. P. Virchenko; O. I. Sheremet. Geometric Models of the Statistical Theory of Fragmentation. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 161-177. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a1/

[1] A. N. Kolmogorov, DAN SSSR, 31:2 (1941), 99 | Zbl

[2] A. F. Filippov, Teoriya veroyat. i ee primenen., 6:3 (1961), 299 | MR | Zbl

[3] A. Charlesby, Proc. Roy. Soc. (London). Ser. A, 224 (1954), 120 | DOI

[4] R. M. Ziff, E. D. McGrady, J. Phys. A, 18 (1985), 3027 | DOI | MR

[5] R. Z. Sagdeev, A. V. Tur, V. V. Yanovskii, DAN SSSR, 294:5 (1987), 1105 | MR

[6] R. M. Ziff, J. Phys. A, 24 (1991), 2421 | DOI | MR

[7] P. L. Krapivsky, E. Ben-Naim, Phys. Rev. E, 50 (1994), 3502 | DOI

[8] R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, John Wiley Sons, New York, 1975 | MR

[9] Yu. P. Virchenko, O. I. Sheremet, Dopovidi NAN Ukraíni, 2000, no. 8, 82–86 | MR

[10] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[11] G. Matheron, Random Sets and Integral Geometry, John Wiley Sons, New York, 1975 | MR | Zbl

[12] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl

[13] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR

[14] E. Nummelin, Obschie neprivodimye tsepi Markova i neotritsatelnye operatory, Mir, M., 1989 | MR

[15] R. Bellman, Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR