Geometric Models of the Statistical Theory of Fragmentation
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 161-177
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose an approach to describing a medium fragmentation process based on studying the stochastic geometry of the medium states. This approach allows accounting for the interrelation of the produced fragments relative to their positions and, in particular, allows taking the size of the fragmenting object into account. We use this approach to analyze a one-dimensional model – a stochastic process with discrete time and a phase space consisting of partitions into fragments of the real axis. We derive the driving equation for the partition function with respect to sizes and prove the existence of a limit distribution.
@article{TMF_2001_128_2_a1,
author = {Yu. P. Virchenko and O. I. Sheremet},
title = {Geometric {Models} of the {Statistical} {Theory} of {Fragmentation}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {161--177},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a1/}
}
TY - JOUR AU - Yu. P. Virchenko AU - O. I. Sheremet TI - Geometric Models of the Statistical Theory of Fragmentation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 161 EP - 177 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a1/ LA - ru ID - TMF_2001_128_2_a1 ER -
Yu. P. Virchenko; O. I. Sheremet. Geometric Models of the Statistical Theory of Fragmentation. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 2, pp. 161-177. http://geodesic.mathdoc.fr/item/TMF_2001_128_2_a1/