Self-Adjoint A$\Delta$Os with Vanishing Reflection
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 116-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review our work concerning ordinary linear second-order analytic difference operators (A$\Delta$Os) that admit reflectionless eigenfunctions. This operator class is far more extensive than the reflectionless Schrödinger and Jacobi operators corresponding to KdV and Toda lattice solitons. A subclass of reflectionless A$\Delta$Os, which generalizes the latter class of differential and discrete difference operators, is shown to correspond to the soliton solutions of a nonlocal Toda-type evolution equation. Further restrictions give rise to A$\Delta$Os with isometric eigenfunction transformations, which can be used to associate self-adjoint operators on $L^2(\mathbb R,dx)$ with the A$\Delta$Os.
@article{TMF_2001_128_1_a9,
     author = {S. Ruijsenaars},
     title = {Self-Adjoint {A}$\Delta${Os} with {Vanishing} {Reflection}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {116--132},
     year = {2001},
     volume = {128},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a9/}
}
TY  - JOUR
AU  - S. Ruijsenaars
TI  - Self-Adjoint A$\Delta$Os with Vanishing Reflection
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 116
EP  - 132
VL  - 128
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a9/
LA  - ru
ID  - TMF_2001_128_1_a9
ER  - 
%0 Journal Article
%A S. Ruijsenaars
%T Self-Adjoint A$\Delta$Os with Vanishing Reflection
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 116-132
%V 128
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a9/
%G ru
%F TMF_2001_128_1_a9
S. Ruijsenaars. Self-Adjoint A$\Delta$Os with Vanishing Reflection. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 116-132. http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a9/

[1] S. N. M. Ruijsenaars, J. Nonlin. Math. Phys. (Suppl.), 8 (2001), 240–248 | DOI | MR | Zbl

[2] S. N. M. Ruijsenaars, J. Math. Phys., 40 (1999), 1627–1663 | DOI | MR | Zbl

[3] S. N. M. Ruijsenaars, Publ. RIMS Kyoto Univ., 36 (2000), 707–753 | DOI | MR | Zbl

[4] S. N. M. Ruijsenaars, J. Nonlin. Math. Phys., 8 (2001), 106–138 | DOI | MR | Zbl

[5] S. N. M. Ruijsenaars, “Reflectionless analytic difference operators. II: Relations to soliton systems”, J. Nonlin. Math. Phys. (to appear) | MR

[6] S. N. M. Ruijsenaars, “Reflectionless analytic difference operators. III: Hilbert space aspects” (to appear)

[7] F. Kalodzhero, A. Degasperis, Spektralnye preobrazovaniya i solitony. Metody resheniya i issledovaniya nelineinykh evolyutsionnykh uravnenii, Mir, M., 1985 | MR

[8] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1985 | MR

[9] H. Flaschka, Progr. Theor. Phys., 51 (1974), 703–716 | DOI | MR | Zbl

[10] M. Toda, Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[11] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[12] P. M. Santini, “Integrable singular integral evolution equations”, Important Developments in Soliton Theory, eds. A. S. Fokas and V. E. Zakharov, Springer, New York, 1993, 147–177 | DOI | MR | Zbl

[13] S. N. M. Ruijsenaars and H. Schneider, Ann. Phys., 170 (1986), 370–405 | DOI | MR | Zbl

[14] S. N. M. Ruijsenaars, Publ. RIMS Kyoto Univ., 30 (1994), 865–1008 | DOI | MR | Zbl

[15] S. N. M. Ruijsenaars, Ann. Phys., 256 (1997), 226–301 | DOI | MR | Zbl