@article{TMF_2001_128_1_a7,
author = {A. Yu. Orlov and D. M. Shcherbin},
title = {Hypergeometric {Solutions} of {Soliton} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {84--108},
year = {2001},
volume = {128},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a7/}
}
A. Yu. Orlov; D. M. Shcherbin. Hypergeometric Solutions of Soliton Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 84-108. http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a7/
[1] V. S. Dryuma, Pisma v ZhETF, 19 (1974), 653–754
[2] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 8:3 (1974), 43–53 ; 13:3 (1979), 13–22 | MR | Zbl | MR | Zbl
[3] A. V. Mikhailov, Pisma v ZhETF, 30 (1979), 443–448
[4] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Non-linear Integrable Systems – Classical Theory and Quantum Theory, Proc. of RIMS Symp. (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo and T. Miwa, World Scientific, Singapore, 1983, 39–120 | MR
[5] L. A. Dickey, Soliton Equations and Hamiltonian System, World Scientific, Singapore, 1991 | MR | Zbl
[6] N. Ya. Vilenkin, A. U. Klimyk, Representation of Lie Groups and Special Functions. V. 3. Classical and Quantum Groups and Special Functions, Kluwer, Dordrecht, 1992 | MR | Zbl
[7] N. Ya. Vilenkin, A. U. Klimyk, Representation of Lie Groups and Special Functions. Recent Advances, Kluwer, Dordrecht, 1995 | MR
[8] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon, Oxford, 1995 | MR | Zbl
[9] S. C. Milne, “Summation theorems for basic hypergeometric series of Schur function argument”, Progress in Approximation Theory, eds. A. A. Gonchar and E. B. Saff, Springer, New York, 1992, 51–77 | DOI | MR | Zbl
[10] K. I. Gross, D. S. Richards, Trans. Am. Math. Soc., 301 (1987), 781–811 | DOI | MR | Zbl
[11] K. Ueno, K. Takasaki, Adv. Stud. Pure Math., 4, 1984, 1–95 | MR | Zbl
[12] P. Vinternits, A. Yu. Orlov, TMF, 113 (1997), 231–260 | DOI | MR
[13] L. A. Dickey, Mod. Phys. Lett. A, 8 (1993), 1357–1377 | DOI | MR | Zbl
[14] M. Adler, T. Shiota, P. van Moerbeke, Phys. Lett. A, 194 (1994), 33–34 | DOI | MR
[15] A. Yu. Orlov, “Vertex operators, $\partial$ bar problem, symmetries, Hamiltonian and Lagrangian formalism of $(2+1)$ dimensional integrable systems”, Proc. 3rd Kiev Intl. Workshop, V. 1 (1987), eds. V. G. Bar'yakhtar et al., World Scientific, Singapore, 1988, 116–134 | MR | Zbl
[16] K. Takasaki, Commun. Math. Phys., 181 (1996), 131–156 ; T. Nakatsu, K. Takasaki, S. Tsujimaru, Nucl. Phys. B, 443 (1995), 155–197 | DOI | MR | Zbl | DOI | MR | Zbl
[17] G. E. Andrews, E. Onofri, “Lattice gauge theory, orthogonal polynomials, and $q$-hypergeometric functions”, Special Functions{:} Group Theoretical Aspects and Applications, eds. R. A. Askey, T. H. Koornwinder, W. Schempp, Reidel, Dordrecht, 1984, 163–188 | DOI | MR | Zbl
[18] A. Odzijevicz, Commun. Math. Phys., 192 (1998), 183–215 | DOI | MR
[19] A. Yu. Morozov, L. Vinet, Phys. Lett. A, 8 (1993), 2891–2902 | DOI | MR | Zbl
[20] I. Loutsenko, V. Spiridonov, Nucl. Phys. B, 538 (1999), 731–758 | DOI | MR | Zbl
[21] A. Zabrodin, Commuting difference operators with elliptic coefficients from Baxter's vacuum vectors, ; I. Frenkel, V. Turaev, “Elliptic solutions of the Yang–Baxter equations and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, eds. V. I. Arnold, I. M. Gelfand, V. S. Retakh, M. Smirnov, Birkhauser, Boston, 1997, 171–204 ; A. Zhedanov, V. Spiridonov, Commun. Math. Phys., 210 (2000), 49–83 E-print QA/9912218 | MR | DOI | MR | Zbl | DOI | MR | Zbl
[22] T. Takebe, K. Takasaki, Rev. Math. Phys., 7 (1995), 743–808 ; E-print hep-th/94050096 | DOI | MR | Zbl
[23] M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Phys. Rev. Lett., 84 (2000), 5106–5109 | DOI
[24] G. Segal, G. Wilson, Publ. Math. IHES, 61 (1985), 5–65 | DOI | Zbl
[25] A. Yu. Orlov, “Volterra operator algebra for zero-curvature representation: Universality of KP”, Nonlinear and Turbulent Processes in Physics (Potsdam–Kiev, 1991), Series in Nonlinear Phys., 126, eds. A. Fokas, D. Kaup, V. E. Zakharov, Springer, Berlin, 1993, 126–131 | MR