Covariance of Lax Pairs and Integrability of the Compatibility Condition
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 65-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the joint covariance of Lax pairs (LPs) with respect to Darboux transformations (DT). The scheme is based on comparing general expressions for the transformed coefficients of a LP and its Frechet derivative. We use the compact expressions of the DT via a version of non-Abelian Bell polynomials. We show that the so-called binary version of Bell polynomials forms a convenient basis for specifying the invariant subspaces. Some nonautonomous generalizations of KdV and Boussinesq equations are discussed in this context. We consider a Zakharov–Shabat-like problem to obtain restrictions at a minimal operator level. The subclasses that allow a DT symmetry (covariance at the LP level) are considered from the standpoint of dressing-chain equations. The cases of the classical DT and binary combinations of elementary DTs are considered with possible reduction constraints of the Mikhailov type (generated by an automorphism). Examples of Liouville–von Neumann equations for the density matrix are considered as illustrations.
@article{TMF_2001_128_1_a6,
     author = {S. B. Leble},
     title = {Covariance of {Lax} {Pairs} and {Integrability} of the {Compatibility} {Condition}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {65--83},
     year = {2001},
     volume = {128},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a6/}
}
TY  - JOUR
AU  - S. B. Leble
TI  - Covariance of Lax Pairs and Integrability of the Compatibility Condition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 65
EP  - 83
VL  - 128
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a6/
LA  - ru
ID  - TMF_2001_128_1_a6
ER  - 
%0 Journal Article
%A S. B. Leble
%T Covariance of Lax Pairs and Integrability of the Compatibility Condition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 65-83
%V 128
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a6/
%G ru
%F TMF_2001_128_1_a6
S. B. Leble. Covariance of Lax Pairs and Integrability of the Compatibility Condition. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 65-83. http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a6/

[1] S. B. Leble, “Darboux transforms algebras in 2+1 dimensions”, Nonlinear Evolution Equations and Dynamical Systems, Proc. of the 7th Workshop NEEDS-91 (Baia Verde, Italy, June 19–29, 1991), eds. M. Boiti et al., World Scientific, Singapore, 1992, 53–61 | MR | Zbl

[2] A. A. Zaitsev, S. B. Leble, Rep. Math. Phys., 46 (2000), 165–174 ; E-print math-ph/9903005 | DOI | MR | Zbl

[3] A. B. Borisov, S. A. Zykov, TMF, 115 (1998), 199–214 | DOI | MR | Zbl

[4] V. B. Matveev, Lett. Math. Phys., 3 (1979), 217–219 ; 503–512 | DOI | MR | Zbl

[5] S. B. Leble, A. A. Zaitsev, Rep. Math. Phys., 39 (1997), 177–183 ; Intertwine operators and elementary Darboux transforms in differential rings and modules, Preprint, Kaliningrad State Univ., Kaliningrad, 1994 | DOI | MR

[6] N. V. Ustinov, Preobrazovanie Darbu dlya spektralnykh zadach s reduktsiyami, Diss. ... kand. fiz. mat. nauk, SPGU, Sankt-Peterburg, 1994

[7] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[8] S. Leble, N. Ustinov, “Deep reductions for matrix Lax system, invariant forms, and elementary Darboux transforms”, Proc. of Workshop NEEDS-92, ed. V. Makhan'kov, World Scientific, Singapore, 1993, 34–41 | MR

[9] S. Leble, Computers Math. Appl., 35 (1998), 73–81 | DOI | MR | Zbl

[10] S. B. Leble, TMF, 122 (2000), 239–250 | DOI | MR | Zbl

[11] A. Mikhailov, Physica D, 3 (1981), 73–117 | DOI | Zbl

[12] S. B. Leble, M. Czachor, Phys. Rev. E. Part A, 58:6 (1998), 7091–7100 | DOI | MR

[13] J. Weiss, J. Math. Phys, 27 (1986), 2647–2656 | DOI | MR | Zbl

[14] A. Shabat, Inverse Problems, 8 (1992), 303–308 | DOI | MR | Zbl

[15] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego prilozh., 27 (1993), 1–21 | MR | Zbl

[16] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 8 (1974), 43–53 | MR | Zbl

[17] N. Ustinov, S. Leble, M. Czachor, N. Kuna, Darboux integration of $\imath\rho_t=[H,f(\rho)]$, ; Phys. Lett. A, 279 (2001), 333–340 E-print quant-ph/0005030 | MR | DOI | Zbl

[18] M. Czachor, N. Ustinov, New class of integrable nonlinear von Neumann-type equations, E-print math.nlinSI/0011013

[19] A. V. Mikhailov, V. V. Sokolov, TMF, 122 (2000), 88–101 | DOI | MR | Zbl

[20] M. Czachor, S. Leble, M. Kuna, J. Naudts, “Nonlinear von Neumann type equations”, Trends in Quantum Mechanics, eds. H.-D. Doebner et al., World Scientific, Singapore, 2000, 209–226 | MR | Zbl

[21] R. Schimming, S. Z. Rida, Int. J. Alg. Comput., 6 (1996), 635–644 | DOI | MR | Zbl

[22] A. Yurov, Darboux Transformations in Quantum Mechanics, Kaliningrad State Univ., Kaliningrad, 1998

[23] C. Gilson, F. Lambert, J. Nimmo, R. Willox, Proc. Roy. Soc. Lond. A, 452 (1996), 223–234 | DOI | MR | Zbl

[24] F. Lambert, J. Springael, J. Phys. Soc. Japan, 66 (1997), 2211–2213 | DOI | MR | Zbl

[25] A. Shabat, “Dressing chains and lattices”, Proc. Workshop on Nonlinearity, Integrability and All That{:} Twenty Years after NEEDS '$79$ (Lecce, Italy, July 1–10, 1999), eds. M. Boiti et al., World Scientific, Singapore, 2000, 331–342 | DOI | MR | Zbl

[26] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, DAN SSSR, 42 (1987), 3–53 | MR

[27] A. Leznov, E. Yuzbashyan, Rep. Math. Phys., 43 (1999), 207–214 | DOI | MR | Zbl

[28] H. Steudel, Ann. der Physik, 32 (1975), 205 ; 445; 459 | DOI | MR | MR

[29] V. B. Matveev, Darboux transformations in differential rings and functional-difference equations, Preprint 96-170, MPI, Bonn, 1996 ; Proc. CRM Workshop on Bispectral Problems (Montreal, March, 1997), ed. A. Kasman, AMS, New York, 1998, 211–226 | MR | DOI