Diffusion of Loops
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 56-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a lattice model that is closely related to the Ising model and can be regarded as describing diffusion of loops in two dimensions. The time development is given by a transfer matrix for a random surface model on a three-dimensional lattice. The transfer matrix is indexed by loops and is invariant under a group of motions in the loop space. The eigenvalues of the transfer matrix are calculated in terms of the partition function and the correlation functions of the Ising model.
@article{TMF_2001_128_1_a5,
     author = {T. Jonsson},
     title = {Diffusion of {Loops}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {56--64},
     year = {2001},
     volume = {128},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a5/}
}
TY  - JOUR
AU  - T. Jonsson
TI  - Diffusion of Loops
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 56
EP  - 64
VL  - 128
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a5/
LA  - ru
ID  - TMF_2001_128_1_a5
ER  - 
%0 Journal Article
%A T. Jonsson
%T Diffusion of Loops
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 56-64
%V 128
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a5/
%G ru
%F TMF_2001_128_1_a5
T. Jonsson. Diffusion of Loops. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 56-64. http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a5/

[1] J. Ambjørn, B. Durhuus, T. Jonsson, Quantum Geometry: A Statistical Field Theory Approach, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[2] G. K. Savvidy, K. G. Savvidy, Phys. Lett. B, 337 (1994), 333 | DOI | MR

[3] T. Jonsson, G. K. Savvidy, Phys. Lett. B, 449 (1999), 253 | DOI

[4] T. Jonsson, G. K. Savvidy, Nucl. Phys. B, 575 (2000), 661 | DOI | MR | Zbl

[5] B. M. McCoy, T. T. Wu, The Two-Dimensional Ising Model, Harvard Univ. Press, Boston, MA, 1973

[6] K. Kawasaki, “Kinetics of Ising models”, Phase Transitions and Critical Phenomena, V. 2, eds. C. Domb and M. S. Green, Academic Press, London, 1972, 443 | MR

[7] G. K. Savvidy, F. J. Wegner, Nucl. Phys. B, 413 (1994), 605 | DOI | MR | Zbl

[8] G. K. Savvidy, K. G. Savvidy, Phys. Lett. B, 324 (1994), 72 | DOI | MR