@article{TMF_2001_128_1_a2,
author = {V. S. Dryuma},
title = {Applications of {Riemannian} and {Einstein{\textendash}Weyl} {Geometry} in the {Theory} of {Second-Order} {Ordinary} {Differential} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {15--26},
year = {2001},
volume = {128},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a2/}
}
TY - JOUR AU - V. S. Dryuma TI - Applications of Riemannian and Einstein–Weyl Geometry in the Theory of Second-Order Ordinary Differential Equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 15 EP - 26 VL - 128 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a2/ LA - ru ID - TMF_2001_128_1_a2 ER -
%0 Journal Article %A V. S. Dryuma %T Applications of Riemannian and Einstein–Weyl Geometry in the Theory of Second-Order Ordinary Differential Equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2001 %P 15-26 %V 128 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a2/ %G ru %F TMF_2001_128_1_a2
V. S. Dryuma. Applications of Riemannian and Einstein–Weyl Geometry in the Theory of Second-Order Ordinary Differential Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a2/
[1] V. Dryuma, Buletinul AS RM (mathematica), Kishinev, 3:31 (1999), 95–102 | MR | Zbl
[2] V. Dryuma, Mathematical Researches (Kishinev), 112 (1990), 93–103 | MR | Zbl
[3] V. S. Dryuma, “On initial values problem in theory of the second order ODE's”, Proc. Workshop on Nonlinearity, Integrability, and All That: Twenty years after NEEDS'79 (Gallipoli (Lecce), Italy, July 1–July 10, 1999), eds. M. Boiti, L. Martina, F. Pempinelli, B. Prinari, G. Soliani, World Scientific, Singapore, 2000, 109–116 | DOI | MR | Zbl
[4] V. S. Dryuma, “O geometrii differentsialnykh uravnenii vtorogo poryadka”, Trudy vsesoyuznoi konferentsii “Nelineinye uravneniya”, ed. K. V. Frolov, Nauka, M., 1991, 41–48
[5] V. S. Dryuma, TMF, 99 (1994), 241–249 | MR | Zbl
[6] V. S. Dryuma, “Geometrical properties of nonlinear dynamical systems”, Proc. First Workshop on Nonlinear Physics (Le Sirenuse, Gallipoli (Lecce), Italy, June 29–July 7, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Scientific, Singapore, 1996, 83–93 | MR | Zbl
[7] R. Liouville, J. École Polytec., 59 (1889), 7–76
[8] A. Tresse, Détermination des Invariants Ponctuels de l'Équation Differentielle Ordinaire de Second Ordre: $y''=w(x,y,y')$, Preisschriften der fürstlichen Jablonowski'schen Gesellschaft, 32, S. Hirzel, Leipzig, 1896
[9] A. Tresse, Acta Math., 18 (1894), 1–88 | DOI | MR
[10] E. Cartan, Bull. Soc. Math. France, 52 (1924), 205–241 | DOI | MR | Zbl
[11] E. M. Paterson, A. G. Walker, Quart. J. Math. Oxford, 3 (1952), 19–28 | DOI | MR
[12] E. Wilczynski, Trans. Am. Math. Soc., 9 (1908), 103–128 | MR
[13] E. Cartan, Ann. Sci. École Normale Sup., 14 (1943), 1–16 | DOI | MR
[14] H. Pedersen, K. P. Tod, Adv. Math., 97 (1993), 71–109 | DOI | MR
[15] J. Chazy, C. R. Acad. Sci. Paris, 150 (1910), 456–458 | Zbl
[16] R. Ward, Class. Q Grav., 7 (1980), L45–L48
[17] M. Dunaisjski, L. Mason, P. Tod, Einstein–Weyl geometry, the dKP equation, and twistor theory, E-print math.DG/0004031 | MR