Integration of the Gauss–Codazzi Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 133-144
Cet article a éte moissonné depuis la source Math-Net.Ru
The Gauss–Codazzi equations imposed on the elements of the first and the second quadratic forms of a surface embedded in $\mathbb R^3$ are integrable by the dressing method. This method allows constructing classes of Combescure-equivalent surfaces with the same “rotation coefficients”. Each equivalence class is defined by a function of two variables (“master function of a surface”). Each class of Combescure-equivalent surfaces includes the sphere. Different classes of surfaces define different systems of orthogonal coordinates of the sphere. The simplest class (with the master function zero) corresponds to the standard spherical coordinates.
@article{TMF_2001_128_1_a10,
author = {V. E. Zakharov},
title = {Integration of the {Gauss{\textendash}Codazzi} {Equations}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {133--144},
year = {2001},
volume = {128},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a10/}
}
V. E. Zakharov. Integration of the Gauss–Codazzi Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a10/