Integration of the Gauss–Codazzi Equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 133-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Gauss–Codazzi equations imposed on the elements of the first and the second quadratic forms of a surface embedded in $\mathbb R^3$ are integrable by the dressing method. This method allows constructing classes of Combescure-equivalent surfaces with the same “rotation coefficients”. Each equivalence class is defined by a function of two variables (“master function of a surface”). Each class of Combescure-equivalent surfaces includes the sphere. Different classes of surfaces define different systems of orthogonal coordinates of the sphere. The simplest class (with the master function zero) corresponds to the standard spherical coordinates.
@article{TMF_2001_128_1_a10,
     author = {V. E. Zakharov},
     title = {Integration of the {Gauss{\textendash}Codazzi} {Equations}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {133--144},
     year = {2001},
     volume = {128},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a10/}
}
TY  - JOUR
AU  - V. E. Zakharov
TI  - Integration of the Gauss–Codazzi Equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 133
EP  - 144
VL  - 128
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a10/
LA  - ru
ID  - TMF_2001_128_1_a10
ER  - 
%0 Journal Article
%A V. E. Zakharov
%T Integration of the Gauss–Codazzi Equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 133-144
%V 128
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a10/
%G ru
%F TMF_2001_128_1_a10
V. E. Zakharov. Integration of the Gauss–Codazzi Equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 128 (2001) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/TMF_2001_128_1_a10/

[1] B. G. Konopelchenko, J. Phys. A, 30 (1997), L437–L441 | DOI | MR | Zbl

[2] V. E. Zakharov, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[3] V. E. Zakharov, S. V. Manakov, DAN, 360:3 (1998), 324–327 | MR | Zbl