Self-Dual Vortices in Chern–Simons Hydrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 432-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical theory of a nonrelativistic charged particle interacting with a $U(1)$ gauge field is reformulated as the Schrцdinger wave equation modified by the de Broglie–Bohm nonlinear quantum potential. The model is gauge equivalent to the standard Schrödinger equation with the Planck constant $\hbar$ for the deformed strength $1-\hbar^2$ of the quantum potential and to the pair of diffusion-antidiffusion equations for the strength $1+\hbar^2$. Specifying the gauge field as the Abelian Chern–Simons (CS) one in $2+1$ dimensions interacting with the nonlinear Schrödinger (NLS) field (the Jackiw–Pi model), we represent the theory as a planar Madelung fluid, where the CS Gauss law has the simple physical meaning of creation of the local vorticity for the fluid flow. For the static flow when the velocity of the center-of-mass motion (the classical velocity) is equal to the quantum velocity (generated by the quantum potential velocity of the internal motion), the fluid admits an $N$-vortex solution. Applying a gauge transformation of the Auberson–Sabatier type to the phase of the vortex wave function, we show that deformation parameter $\hbar$, the CS coupling constant, and the quantum potential strength are quantized. We discuss reductions of the model to $1+1$ dimensions leading to modified NLS and DNLS equations with resonance soliton interactions.
@article{TMF_2001_127_3_a9,
     author = {J.-H. Lee and O. K. Pashaev},
     title = {Self-Dual {Vortices} in {Chern{\textendash}Simons} {Hydrodynamics}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {432--443},
     year = {2001},
     volume = {127},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a9/}
}
TY  - JOUR
AU  - J.-H. Lee
AU  - O. K. Pashaev
TI  - Self-Dual Vortices in Chern–Simons Hydrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 432
EP  - 443
VL  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a9/
LA  - ru
ID  - TMF_2001_127_3_a9
ER  - 
%0 Journal Article
%A J.-H. Lee
%A O. K. Pashaev
%T Self-Dual Vortices in Chern–Simons Hydrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 432-443
%V 127
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a9/
%G ru
%F TMF_2001_127_3_a9
J.-H. Lee; O. K. Pashaev. Self-Dual Vortices in Chern–Simons Hydrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 432-443. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a9/

[1] F. Guerra, M. Pusterla, Lett. Nuovo Cimento, 34 (1982), 351 ; J. P. Visier, Phys. Lett. A, 135 (1989), 99 | DOI | MR | DOI

[2] L. Smolin, Phys. Lett. A, 113 (1986), 408 ; O. Bertolami, Phys. Lett. A, 154 (1991), 225 | DOI | MR | DOI

[3] R. Schiller, Phys. Rev., 125 (1962), 1100 ; 1109 ; 1116 ; N. Rosen, Amer. J. Phys., 32 (1964), 597 | DOI | MR | Zbl | MR | Zbl | MR | Zbl | DOI | MR

[4] O. K. Pashaev, J. H. Lee, “Black holes and solitons of quantized dispersionless NLS and DNLS equations”, ANZIAM J. Appl. Math. (to appear) | MR

[5] P. C. Sabatier, Inverse Problems, 6 (1990), L47 | DOI | MR | Zbl

[6] G. Auberson, P. C. Sabatier, J. Math. Phys., 35 (1994), 4028 | DOI | MR | Zbl

[7] D. Bohm, Phys. Rev., 85 (1952), 166 | DOI | MR | Zbl

[8] O. K. Pashaev, J. H. Lee, J. Nonlinear Math. Phys. (Suppl.), 8 (2001), 1 ; Resonance NLS solitons as black holes in Madelung fluid, E-print hep-th/9810139 | MR

[9] L. Martina, O. K. Pashaev, G. Soliani, Class. Q Grav., 14 (1997), 3179 ; Phys. Rev. D, 58 (1998), 084025 | DOI | MR | Zbl | DOI | MR

[10] E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Klasse, 1931, 144 | Zbl

[11] S. Jin, C. D. Levermore, D. W. McLaughlin, Commun. Pure Appl. Math., 52 (1999), 613 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[12] N. Ercolani, R. Montgomery, Phys. Lett. A, 180 (1993), 402 | DOI | MR

[13] R. Jackiw, S.-Y. Pi, Phys. Rev. Lett., 64 (1990), 2969 | DOI | MR | Zbl

[14] G. Salesi, Mod. Phys. Lett. A, 22 (1996), 1815 ; G. Salesi, E. Recami, Hydrodynamics of spinning particles, E-print hep-th/9802106 | DOI | MR | Zbl

[15] V. A. Arkadiev, A. K. Pogrebkov, M. C. Polivanov, Inverse Problems, 5 (1989), L1 | DOI | MR | Zbl