Perturbation of Solutions with Moving Singularities
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 401-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Cauchy problem for a nonlinear second-order differential equation with a small parameter in the case where the exact solution has a power singularity depending on a small parameter. We propose an asymptotic method similar to the Krylov–Bogoliubov method for localizing the singularity up to the accuracy of any order and construct an asymptotic expansion of the solution in the domain of regular behavior.
@article{TMF_2001_127_3_a6,
     author = {L. A. Kalyakin},
     title = {Perturbation of {Solutions} with {Moving} {Singularities}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {401--410},
     year = {2001},
     volume = {127},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a6/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Perturbation of Solutions with Moving Singularities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 401
EP  - 410
VL  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a6/
LA  - ru
ID  - TMF_2001_127_3_a6
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Perturbation of Solutions with Moving Singularities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 401-410
%V 127
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a6/
%G ru
%F TMF_2001_127_3_a6
L. A. Kalyakin. Perturbation of Solutions with Moving Singularities. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 401-410. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a6/

[1] E. F. Mischenko, N. Kh. Rozov, Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[2] A. Naife, Metody vozmuschenii, Mir, M., 1984 | MR

[3] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[4] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl

[5] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[6] L. A. Kalyakin, TMF, 118:3 (1999), 390–397 | DOI | MR | Zbl

[7] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe izd-vo, Minsk, 1990 | MR | Zbl

[8] J. Liouville, J. Math. Pure Appl., 18 (1853), 71–74

[9] A. K. Pogrebkov, M. K. Polivanov, Tr. MIAN, 176, 1987, 86–96 | MR

[10] N. M. Krylov, N. N. Bogolyubov, Issledovanie prodolnoi ustoichivosti aeroplana, Gos. aviats. i avtotrakt. izd-vo, M.–L., 1932

[11] G. E. Kuzmak, PMM, 23:3 (1959), 515–526 | MR | Zbl

[12] L. A. Kalyakin, Russian J. Math. Phys., 5 (1998), 447–458 | MR