Integrable Extended Blaszak–Marciniak Lattice and Another Extended Lattice with Their Lax Pairs
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 388-393 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two new lattices are given. One is an extended system of the Blaszak–Marciniak lattice, and the other is the extended system of the lattice given by Wu and Hu. Lax pairs for these two lattices are derived from their corresponding bilinear Bäcklund transformation.
@article{TMF_2001_127_3_a4,
     author = {X. B. Hu and D. L. Wang and H. Tam},
     title = {Integrable {Extended} {Blaszak{\textendash}Marciniak} {Lattice} and {Another} {Extended} {Lattice} with {Their} {Lax} {Pairs}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--393},
     year = {2001},
     volume = {127},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a4/}
}
TY  - JOUR
AU  - X. B. Hu
AU  - D. L. Wang
AU  - H. Tam
TI  - Integrable Extended Blaszak–Marciniak Lattice and Another Extended Lattice with Their Lax Pairs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 388
EP  - 393
VL  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a4/
LA  - ru
ID  - TMF_2001_127_3_a4
ER  - 
%0 Journal Article
%A X. B. Hu
%A D. L. Wang
%A H. Tam
%T Integrable Extended Blaszak–Marciniak Lattice and Another Extended Lattice with Their Lax Pairs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 388-393
%V 127
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a4/
%G ru
%F TMF_2001_127_3_a4
X. B. Hu; D. L. Wang; H. Tam. Integrable Extended Blaszak–Marciniak Lattice and Another Extended Lattice with Their Lax Pairs. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 388-393. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a4/

[1] M. Blaszak, K. Marciniak, J. Math. Phys., 35 (1994), 4661 | DOI | MR | Zbl

[2] Y. T. Wu, X. B. Hu, J. Phys. A, 32 (1999), 1515 | DOI | MR | Zbl

[3] R. Hirota, “Direct methods in soliton theory”, Solitons, eds. R. K. Bullough, P. J. Caudrey, Springer, Berlin, 1980, 157 | DOI | MR

[4] R. Hirota, J. Satsuma, Prog. Theor. Phys. Suppl., 59 (1976), 64 | DOI | MR

[5] Y. Matsuno, Bilinear Transformation Method, Acad. Press, New York, 1984 | MR | Zbl

[6] J. J. C. Nimmo, “Hirota's method”, Soliton Theory: A Survey of Results, ed. A. P. Fordy, Manchester Univ. Press, Manchester, 1990, 75 | MR

[7] X. B. Hu, Y. T. Wu, Phys. Lett. A, 246 (1998), 523 | DOI

[8] S. Wolfram, The Mathematica Book, 4th ed. for Mathematica 4.0, Cambridge University Press Wolfram Media, Cambridge, 1999 | MR | Zbl