Symmetries of the Discrete Nonlinear Schrödinger Equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 379-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Lie algebra $L(h)$ of point symmetries of a discrete analogue of the nonlinear Schrödinger equation (NLS) is described. In the continuous limit, the discrete equation is transformed into the NLS, while the structure of the Lie algebra changes: a contraction occurs with the lattice spacing $h$ as the contraction parameter. A five-dimensional subspace of $L(h)$, generated by both point and generalized symmetries, transforms into the five-dimensional point symmetry algebra of the NLS.
@article{TMF_2001_127_3_a3,
     author = {R. Hernandez Heredero and D. Levi and P. Winternitz},
     title = {Symmetries of the {Discrete} {Nonlinear} {Schr\"odinger} {Equation}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {379--387},
     year = {2001},
     volume = {127},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a3/}
}
TY  - JOUR
AU  - R. Hernandez Heredero
AU  - D. Levi
AU  - P. Winternitz
TI  - Symmetries of the Discrete Nonlinear Schrödinger Equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 379
EP  - 387
VL  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a3/
LA  - ru
ID  - TMF_2001_127_3_a3
ER  - 
%0 Journal Article
%A R. Hernandez Heredero
%A D. Levi
%A P. Winternitz
%T Symmetries of the Discrete Nonlinear Schrödinger Equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 379-387
%V 127
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a3/
%G ru
%F TMF_2001_127_3_a3
R. Hernandez Heredero; D. Levi; P. Winternitz. Symmetries of the Discrete Nonlinear Schrödinger Equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a3/

[1] S. C. Chiu, J. F. Ladik, J. Math. Phys., 18 (1977), 690–700 | DOI | MR | Zbl

[2] R. H. Hernández Heredero, D. Levi, M. A. Rodríguez, P. Winternitz, J. Phys. A, 33 (2000), 5025–5040 | DOI | MR | Zbl

[3] D. Levi, M. A. Rodríguez, J. Phys. A, 25 (1992), L975–L979 | DOI | Zbl

[4] D. Levi, P. Winternitz, Phys. Lett. A, 152 (1991), 335–338 ; J. Math. Phys., 34 (1993), 3713–3730 | DOI | MR | DOI | MR | Zbl

[5] S. Maeda, IMA J. Appl. Math., 38 (1987), 129–134 ; Math. Japonica, 25 (1980), 405–420 | DOI | MR | Zbl | MR | Zbl

[6] G. R. W. Quispel, H. W. Capel, R. Sahadevan, Phys. Lett. A, 170 (1992), 379–383 | DOI | MR

[7] R. Floreanini, L. Vinet, J. Math. Phys., 36 (1995), 7024–7042 | DOI | MR | Zbl

[8] R. H. Hernández Heredero, D. Levi, P. Winternitz, J. Phys. A, 32 (1999), 2685–2695 | DOI | MR | Zbl

[9] D. Levi, L. Vinet, P. Winternitz, J. Phys. A, 30 (1997), 633–649 | DOI | MR | Zbl

[10] E. Inönü, E. P. Wigner, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl

[11] A. A. Izmest'ev, G. S. Pogosyan, A. N. Sissakian, P. Winternitz, J. Math. Phys., 40 (1999), 1549–1573 | DOI | MR | Zbl

[12] R. V. Moody, J. Patera, J. Phys. A, 24 (1991), 2227–2258 | DOI | MR

[13] J. Patera, G. S. Pogosyan, P. Winternitz, J. Phys. A, 32 (1999), 805–826 | DOI | MR | Zbl

[14] V. A. Dorodnitsyn, Dokl. RAN, 328:6 (1993), 678–682 | MR | Zbl

[15] V. A. Dorodnitsyn, R. Kozlov, P. Winternitz, J. Math. Phys., 41 (2000), 480–504 | DOI | MR | Zbl