Quasi-Exactly Solvable Generalizations of Calogero--Sutherland Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 367-378

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the procedures for constructing quasi-exactly solvable models with one degree of freedom to (quasi-)exactly solvable models of $N$ particles on a line allows deriving many well-known models in the framework of a new approach that does not use root systems. In particular, a $BC_N$ elliptic Calogero–Sutherland model is found among the quasi-exactly solvable models. For certain values of the paramaters of this model, we can explicitly calculate the ground state and the lowest excitations.
@article{TMF_2001_127_3_a2,
     author = {D. Gomez-Ullate and A. Gonzalez-Lopez and M. A. Rodriguez},
     title = {Quasi-Exactly {Solvable} {Generalizations} of {Calogero--Sutherland} {Models}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--378},
     publisher = {mathdoc},
     volume = {127},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a2/}
}
TY  - JOUR
AU  - D. Gomez-Ullate
AU  - A. Gonzalez-Lopez
AU  - M. A. Rodriguez
TI  - Quasi-Exactly Solvable Generalizations of Calogero--Sutherland Models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2001
SP  - 367
EP  - 378
VL  - 127
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a2/
LA  - ru
ID  - TMF_2001_127_3_a2
ER  - 
%0 Journal Article
%A D. Gomez-Ullate
%A A. Gonzalez-Lopez
%A M. A. Rodriguez
%T Quasi-Exactly Solvable Generalizations of Calogero--Sutherland Models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2001
%P 367-378
%V 127
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a2/
%G ru
%F TMF_2001_127_3_a2
D. Gomez-Ullate; A. Gonzalez-Lopez; M. A. Rodriguez. Quasi-Exactly Solvable Generalizations of Calogero--Sutherland Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a2/