Quasi-Exactly Solvable Generalizations of Calogero--Sutherland Models
Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 367-378
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of the procedures for constructing quasi-exactly solvable models with one degree of freedom to (quasi-)exactly solvable models of $N$ particles on a line allows deriving many well-known models in the framework of a new approach that does not use root systems. In particular, a $BC_N$ elliptic Calogero–Sutherland model is found among the quasi-exactly solvable models. For certain values of the paramaters of this model, we can explicitly calculate the ground state and the lowest excitations.
@article{TMF_2001_127_3_a2,
author = {D. Gomez-Ullate and A. Gonzalez-Lopez and M. A. Rodriguez},
title = {Quasi-Exactly {Solvable} {Generalizations} of {Calogero--Sutherland} {Models}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {367--378},
publisher = {mathdoc},
volume = {127},
number = {3},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a2/}
}
TY - JOUR AU - D. Gomez-Ullate AU - A. Gonzalez-Lopez AU - M. A. Rodriguez TI - Quasi-Exactly Solvable Generalizations of Calogero--Sutherland Models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2001 SP - 367 EP - 378 VL - 127 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a2/ LA - ru ID - TMF_2001_127_3_a2 ER -
%0 Journal Article %A D. Gomez-Ullate %A A. Gonzalez-Lopez %A M. A. Rodriguez %T Quasi-Exactly Solvable Generalizations of Calogero--Sutherland Models %J Teoretičeskaâ i matematičeskaâ fizika %D 2001 %P 367-378 %V 127 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a2/ %G ru %F TMF_2001_127_3_a2
D. Gomez-Ullate; A. Gonzalez-Lopez; M. A. Rodriguez. Quasi-Exactly Solvable Generalizations of Calogero--Sutherland Models. Teoretičeskaâ i matematičeskaâ fizika, Tome 127 (2001) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/TMF_2001_127_3_a2/